Return to search

Design, fabrication and characterization of III-nitride PN junction devices

Design, fabrication and characterization of III-Nitride pn junction devices
Jae Boum Limb
94 pages
Directed by Dr. Russell D. Dupuis

This dissertation describes an investigation of three types of III-nitride (AlInGaN) based p-n junction devices that were grown by metalorganic chemical vapor deposition (MOCVD). The three types of devices are Ultra-Violet (UV) avalanche photodiodes (APDs), green light emitting diodes (LEDs), and p-i-n rectifiers.
For avalanche photodiodes, a material growth on low-dislocation density GaN substrates, processed with low-damage etching receipes and high quality dielectric passivations, were proposed. Using this technology, GaN APDs with optical gains greater than 3000, and AlGaN APDs showing true avalanche gains have been demonstrated. For green LEDs, the use of InGaN:Mg as the p-layer, rather than employing the conventional GaN:Mg has been proposed. Green LEDs with p-InGaN have shown higher emission intensities and lower diode series resistances compared to LEDs with p-GaN. Using p-InGaN layers, LEDs emitting at green and longer wavelengths have been realized. For p-i-n rectifiers, design, fabrication and characterization of device structures using the conventional mesa-etch configuration, as well as the full-vertical method have been proposed. High breakdown devices with low on-resistances have been achieved.
Specific details on device structures, fabrication methods, and characterization results are discussed.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/16331
Date02 July 2007
CreatorsLimb, Jae Boum
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0015 seconds