Abstract : Wastepaper sludge ash (WSA) is generated by a cogeneration station by burning wastepaper sludge. It mainly consists of amorphous aluminosilicate phase, anhydrite, gehlenite, calcite, lime, C2S, C3A, quartz, anorthite, traces of mayenite. Because of its free lime content (~10%), WSA suspension has a high pH (13). Previous researchers have found that the WSA composition has poor robustness and the variations lead to some unsoundness for Portland cement (PC) blended WSA concrete. This thesis focused on the use of WSA in different types of concrete mixes to avoid the deleterious effect of the expansion due to the WSA hydration. As a result, WSA were used in making alkali-activated materials (AAMs) as a precursor source and as a potential activator in consideration of its amorphous content and the high alkaline nature. Moreover, the autogenous shrinkage behavior of PC concrete at low w/b ratio was used in order to compensate the expansion effect due to WSA. The concrete properties as well as the volume change were investigated for the modified WSA blended concrete. The reaction mechanism and microstructure of newly formed binder were evaluated by X-ray diffraction (XRD), calorimetry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).
When WSA was used as precursor, the results showed incompatible reaction between WSA and alkaline solution. The mixtures were not workable and provided very low compressive strength no matter what kinds of chemical activators were used. This was due to the metallic aluminum in WSA, which releases abundant hydrogen gas when WSA reacts with strong alkaline solution. Besides, the results of this thesis showed that WSA can activate the glassy phase contained in slag, glass powder (GP) and class F fly ash (FFA) with an optimum blended ratio of 50:50. The WSA/slag (mass ratio of 50:50) mortar (w/b of 0.47) attained 46 MPa at 28 days without heat curing assistance. A significant fast setting was noticed for the WSA-activated binder due to the C3A phase, free lime and metallic aluminum contained in the WSA. Adding 5% of gypsum can delay the fast setting, but this greatly increased the potential risk of intern sulfate attack. The XRD, TGA and calorimetry analyses demonstrated the formation of ettringite, C-S-H, portlandite, hydrogarnet and calcium carboaluminate in the hydrated binder. The mechanical performance of different binder was closely related to the microstructure of corresponding binder which was proved by the SEM observation. The hydrated WSA/slag and WSA/FFA binder formed a C-A-S-H type of gel with lower Ca/Si ratio (0.47~1.6). A hybrid gel (i.e. C-N-A-S-H) was observed for the WSA/GP binder with a very low Ca/Si ratio (0.26) and Na/Si ratio (0.03). The SEM/EDX analyses displayed the formation of expansive gel (ettringite and thaumasite) in the gypsum added WSA/slag concrete. The gradual emission of hydrogen gas due to the reaction of WSA with alkaline environment significantly increased the porosity and degraded the microstructure of hydrated matrix after the setting.
In the last phase of this research WSA-PC blended binder was tailored to form a high autogenous shrinkage concrete in order to compensate the initial expansion. Different binders were proportioned with PC, WSA, silica fume or slag. The microstructure and mechanical properties of concrete can be improved by decreasing w/b ratios and by incorporating silica fume or slag. The 28-day compressive strength of WSA-blended concrete was above 22 MPa and reached 45 MPa when silica fume was added. The PC concrete incorporating silica fume or slag tended to develop higher autogenous shrinkage at low w/b ratios, and thus the ternary binder with the addition of WSA inhibited the long term shrinkage due to the initial expansion property to WSA. In the restrained shrinkage test, the concrete ring incorporating the ternary binder (PC/WSA/slag) revealed negligible potential to cracking up to 96 days as a result of the offset effect by WSA expansion. The WSA blended regular concrete could be produced for potential applications with reduced expansion, good mechanical property and lower permeability. / Résumé : Les cendres de boues de désencrage (CBD) sont générées par une centrale de cogénération par combustion boues de désencrage. Ils se composent principalement de phase amorphe d'aluminosilicate, anhydrite, gehlenite, calcite, chaux, C2S, C3A, quartz, anorthite, des traces de mayénite. En raison de leur teneur en chaux libre (~ 10%), CBD ont un pH élevé (13). Les chercheurs précédents ont montré que la composition des CDB a une mauvaise robustesse et les variations conduisent à une certaine inconsistance pour le béton avec un mélange de ciment Portland (CP) et des CBD. Cette thèse a porté sur l'utilisation des CBD dans différents types de mélanges de béton pour éviter l'effet délétère de l'expansion due à l'hydratation des CBD. Par conséquent, les CBD ont été utilisées dans la fabrication des matériaux à activation alcaline (MAA), en tant que source précurseur et comme activateur potentiel en tenant compte de sa teneur en matière amorphe et la nature très alcaline des CBD. De plus, le retrait endogène du béton avec CP à faible rapport E/L a été utilisé afin de compenser l'effet d'expansion en raison des CBD. Les propriétés du béton ainsi que le changement de volume ont été étudiés pour le béton mélangé avec des CBD modifiés. Le mécanisme réactionnel et la microstructure du liant nouvellement formé a été évaluée par la diffraction aux rayons X diffraction (DRX), calorimétrie, l'analyse thermogravimétrique (ATG), microscopie électronique à balayage (MEB) et spectroscopie à dispersion d'énergie aux rayons X (DEX).
Quand les CBD ont été utilisés comme précurseur, les résultats ont montré des réactions incompatibles entre CBD et une solution alcaline. Les mélanges ne sont pas maniables et donnent de très faibles résistances en compression, peu importe le type d'activateurs chimiques utilisés. Cela est dû à l'aluminium métallique dans les CBD, qui permet de libérer de l'hydrogène gazeux en abondance quand les CBD réagissent avec une solution alcaline forte. D'ailleurs, les résultats de ces recherches ont montré que les CBD peuvent activer la phase amorphe contenue dans le laitier, poudre de verre (PV) et les cendres volantes de classe F (CVF) avec un rapport de mélange optimal de 50:50. Un mortier avec un rapport massique 50:50 de CBD et de laitier (E/L de 0,47) atteint 46 MPa à 28 jours sans l’aide d’un murissement à chaud. Une prise rapide significative a été notée pour le liant CBD activé en raison de la phase C3A, chaux libre et l’aluminium métallique impliqué dans les CBD. L’ajout de 5% de gypse peut retarder la prise rapide, mais augmente grandement le risque potentiel de l’attaque au sulfate interne. Le DRX, ATG et l’analyse calorimétrique ont démontré la formation d'ettringite, C-S-H, la portlandite, hydrogrenat et carboaluminate de calcium dans le liant hydraté. Les différentes performances mécaniques du liant ont été étroitement liées à la microstructure correspondante qui a été prouvée par le MEB. Les liants hydratés CBD/laitier et CBD/CVF ont formé un type de gel C-A-S-H avec un faible rapport Ca/Si (0,47 ~ 1,6). On a observé un gel hybride (à savoir C-N-A-S-H) pour le liant CBD/PV avec un des très faibles rapports Ca/Si (0,26) et Na/Si (0,03). Les analyses MEB/DRX ont montré une formation de gel expansive (d’ettringite et de thaumasite) dans le gypse ajouté au béton avec les CBD et le laitier. L'émission progressive de l'hydrogène gazeux en raison de la réaction des CBD dans un environnement alcaline a augmenté la porosité et la dégradation de la microstructure de matrice hydratée après la prise.
Dans la dernière phase de cette recherche, le liant avec un mélange de CBD et de CP a été développé pour former un retrait autogène élevé, afin de compenser l'expansion initiale. Différents liants ont été préparés avec le CP, CBD, la fumée de silice ou du laitier. La microstructure et les propriétés mécaniques du béton peuvent être améliorées en diminuant les rapports E/L et en incorporant la fumée de silice ou du laitier. La résistance en compression à 28 jours du béton aux CBD était supérieure à 22 MPa et atteint 45MPa lorsqu'on a ajouté de la fumée de silice. Le béton avec du CP incorporant de la fumée de silice ou du laitier ont tendance à développer un retrait endogène plus élevée à de faibles rapports E/L, et donc le liant ternaire avec l'ajout des CBD réduit le retrait à long terme en raison de la propriété d’expansion initiale des CBD. Dans l'essai de retrait empêché, l'anneau en béton incorporant le liant ternaire (CP/CBD/laitier) a révélé un potentiel négligeable à la fissuration jusqu'à 96 jours en raison de l'effet de décalage de l'expansion des CBD. Des liants modifiés avec des CBD peuvent être utilisés dans des mélanges de béton ordinaire pour des applications potentielles avec des expansions réduites, des bonnes propriétés mécaniques et une faible perméabilité.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/8859 |
Date | January 2016 |
Creators | Xie, Ailing |
Contributors | Tagnit-Hamou, Arezki |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | English |
Detected Language | French |
Type | Thèse |
Rights | © Ailing Xie, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.0033 seconds