Dans cette thèse, la connexion entre certaines structures algébriques récentes (algèbres tridiagonales, algèbre q-Onsager, algèbres q-Onsager généralisées), la théorie des représentations (paire tridiagonale, paire de Leonard, polynômes orthogonaux), certaines des propriétés de ces algèbres et l’analyse de modèles intégrables quantiques sur le réseau (la chaîne de spin XXZ ouverte aux racines de l’unité) est considérée. / In this thesis, the connection between recently introduced algebraic structures (tridiagonal algebra, q-Onsager algebra, generalized q-Onsager algebras), related representation theory (tridiagonal pair, Leonard pair, orthogonal polynomials), some properties of these algebras and the analysis of related quantum integrable models on the lattice (the XXZ open spin chain at roots of unity) is considered.
Identifer | oai:union.ndltd.org:theses.fr/2015TOUR4027 |
Date | 24 November 2015 |
Creators | Vu, Thi Thao |
Contributors | Tours, Baseilhac, Pascal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds