Return to search

Ion-beam processes in group-III nitrides

Group-III-nitride semiconductors (GaN, InGaN, and AlGaN) are important for the fabrication of a range of optoelectronic devices (such as blue-green light emitting diodes, laser diodes, and UV detectors) as well as devices for high-temperature/high-power electronics. In the fabrication of these devices, ion bombardment represents a very attractive technological tool. However, a successful application of ion implantation depends on an understanding of the effects of radiation damage. Hence, this thesis explores a number of fundamental aspects of radiation effects in wurtzite III-nitrides. Emphasis is given to an understanding of (i) the evolution of defect structures in III-nitrides during ion irradiation and (ii) the influence of ion bombardment on structural, mechanical, optical, and electrical properties of these materials.

Structural characteristics of GaN bombarded with keV ions are studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). Results show that strong dynamic annealing leads to a complex dependence of the damage buildup on ion species with preferential surface disordering. Such preferential surface disordering is due to the formation of surface amorphous layers, attributed to the trapping of mobile point defects by the GaN surface. Planar defects are formed for a wide range of implant conditions during bombardment. For some irradiation regimes, bulk disorder saturates below the amorphization level, and, with increasing ion dose, amorphization proceeds layer-by-layer only from the GaN surface. In the case of light ions, chemical effects of implanted species can strongly affect damage buildup. For heavier ions, an increase in the density of collision cascades strongly increases the level of stable implantation-produced lattice disorder. Physical mechanisms of surface and bulk amorphization and various defect interaction processes in GaN are discussed.

Structural studies by RBS/C, TEM, and atomic force microscopy (AFM) reveal anomalous swelling of implanted regions as a result of the formation of a porous structure of amorphous GaN. Results suggest that such a porous structure consists of N$_{2}$ gas bubbles embedded into a highly N-deficient amorphous GaN matrix. The evolution of the porous structure appears to be a result of stoichiometric imbalance, where N- and Ga-rich regions are produced by ion bombardment. Prior to amorphization, ion bombardment does not produce a porous structure due to efficient dynamic annealing in the crystalline phase.

The influence of In and Al content on the accumulation of structural damage in InGaN and AlGaN under heavy-ion bombardment is studied by RBS/C and TEM. Results show that an increase in In concentration strongly suppresses dynamic annealing processes, while an increase in Al content dramatically enhances dynamic annealing. Lattice amorphization in AlN is not observed even for very large doses of keV heavy ions at -196 C. In contrast to the case of GaN, no preferential surface disordering is observed in InGaN, AlGaN, and AlN. Similar implantation-produced defect structures are revealed by TEM in GaN, InGaN, AlGaN, and AlN.

The deformation behavior of GaN modified by ion bombardment is studied by spherical nanoindentation. Results show that implantation disorder significantly changes the mechanical properties of GaN. In particular, amorphous GaN exhibits plastic deformation even for very low loads with dramatically reduced values of hardness and Young's modulus compared to the values of as-grown GaN. Moreover, implantation-produced defects in crystalline GaN suppress the plastic component of deformation.

The influence of ion-beam-produced lattice defects as well as a range of implanted species on the luminescence properties of GaN is studied by cathodoluminescence (CL). Results indicate that intrinsic lattice defects mainly act as nonradiative recombination centers and do not give rise to yellow luminescence (YL). Even relatively low dose keV light-ion bombardment results in a dramatic quenching of visible CL emission. Postimplantation annealing at temperatures up to 1050 C generally causes a partial recovery of measured CL intensities. However, CL depth profiles indicate that, in most cases, such a recovery results from CL emission from virgin GaN, beyond the implanted layer, due to a reduction in the extent of light absorption within the implanted layer. Experimental data also shows that H, C, and O are involved in the formation of YL. The chemical origin of YL is discussed based on experimental data.

Finally, the evolution of sheet resistance of GaN epilayers irradiated with MeV light ions is studied {\it in-situ}. Results show that the threshold dose of electrical isolation linearly depends on the original free electron concentration and is inversely proportional to the number of atomic displacements produced by the ion beam. Furthermore, such isolation is stable to rapid thermal annealing at temperatures up to 900 C. Results also show that both implantation temperature and ion beam flux can affect the process of electrical isolation. This behavior is consistent with significant dynamic annealing, which suggests a scenario where the centers responsible for electrical isolation are defect clusters and/or antisite-related defects. A qualitative model is proposed to explain temperature and flux effects.

The work presented in this thesis has resulted in the identification and understanding of a number of both fundamental and technologically important ion-beam processes in III-nitrides. Most of the phenomena investigated are related to the nature and effects of implantation damage, such as lattice amorphization, formation of planar defects, preferential surface disordering, porosity, decomposition, and quenching of CL. These effects are often technologically undesirable, and the work of this thesis has indicated, in some cases, how such effects can be minimized or controlled. However, the thesis has also investigated one example where irradiation-produced defects can be successfully applied for a technological benefit, namely for electrical isolation of GaN-based devices. Finally, results of this thesis will clearly stimulate further research both to probe some of the mechanisms for unusual ion-induced effects and also to develop processes to avoid or repair unwanted lattice damage produced by ion bombardment.

Identiferoai:union.ndltd.org:ADTP/216731
Date January 2002
CreatorsKucheyev, Sergei Olegovich, kucheyev1@llnl.gov
PublisherThe Australian National University. Research School of Physical Sciences and Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.anu.edu.au/legal/copyright/copyrit.html), Copyright Sergei Olegovich Kucheyev

Page generated in 0.0132 seconds