This thesis will cover an elementary proof of the Riemann–Roch Theorem for planecurves. We will introduce the notions of divisors, which is a convenient way of com-puting multiplicities of rational function, then continuing by introducing differentials.Furthermore we will introduce the K-vector space L(D), consisting of rational func-tions which are controlled by a divisor D. This is followed by presenting some moreresults before we arrive at an elementary proof of the Riemann–Roch Theorem.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-506510 |
Date | January 2023 |
Creators | Sundgren, Hampus |
Publisher | Uppsala universitet, Algebra, logik och representationsteori |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | U.U.D.M. project report ; 2023:20 |
Page generated in 0.0079 seconds