Topological order is a new paradigm for quantum phases of matter developed to explain phase transitions which do not fit the symmetry breaking scheme for classifying phases of matter. They are characterized by patterns of entanglement that lead to topologically depended ground state degeneracy and anyonic excitations. One common approach for studying such phases in two-dimensional systems is through exactly solvable lattice Hamiltonian models such as quantum double models and String-Net models. The former can be understood as the Hamiltonian formulation of lattice gauge theories and, as such, it is defined by a finite gauge group. However, not much is known about topological phases in tridimensional systems. Motivated by this we develop a new class of three-dimensional exactly solvable models which go beyond quantum double models by using finite crossed modules instead of gauge groups. This approach relies on a lattice implementation of 2-gauge theory to obtain models with a richer topological structure. We construct the Hamiltonian model explicitly and provide a rigorous proof that the ground state degeneracy is a topological invariant and that the ground states can only be characterized with nonlocal order parameters. / Ordem topológica é um novo paradigma para fases quânticas da matéria desenvolvido para explicar transições de fase que não se encaixam no esquema de classificação de fases da matéria por quebra de simetria. Estas fases são caracterizadas por padrões de emaranhamento que levam a uma degenerescência de estado fundamental topológica e a excitações anyonicas. Uma abordagem comum para o estudo de tais fases em sistemas bidimensionais é através de modelos Hamiltonianos exatamente solúveis de rede como os modelos duplos quânticos e modelos de String-Nets. O primeiro pode ser entendido como a formulação Hamiltoniana de teorias de gauge na rede e, desta maneira, é definido por um group de gauge finito. Entretanto, pouco é conhecido a respeito de fases topológicas em sistemas tridimensionais. Motivado por isso nós desenvolvemos uma nova classe de modelos tridimensionais exatamente solúveis que vai alem de modelos duplos quânticos pelo uso de módulos cruzados finitos no lugar de grupos de gauge. Esta abordagem se baseia numa implementação em redes de teoria de 2-gauge para obter modelos com uma estrutura topológica mais rica. Nós construímos o modelos Hamiltoniano explicitamente e fornecemos uma demonstração rigorosa de que a degenerescência de estado fundamental é um invariante topológico e que os estados fundamentais só podem ser caracterizados por parâmetros de ordem não locais.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05122017-094209 |
Date | 10 November 2017 |
Creators | Almeida, Ricardo Costa de |
Contributors | Teotonio Sobrinho, Paulo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds