• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre pontos periódicos de funções do intervalo e do disco / About periodic points of functions of interval and of disk

Araujo, Cristiane Duarte Nascimento 23 March 2015 (has links)
Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2015-12-07T15:50:31Z No. of bitstreams: 1 texto completo.pdf: 1287813 bytes, checksum: 4d11c62be8ea37dacaf482dd7d1413e4 (MD5) / Made available in DSpace on 2015-12-07T15:50:31Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1287813 bytes, checksum: 4d11c62be8ea37dacaf482dd7d1413e4 (MD5) Previous issue date: 2015-03-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O objetivo deste trabalho é apresentar a prova de um resultado importante, conhecido como Teorema de Sarkovskii, que afirma: Seja f : [0, 1] → [0, 1] contínua que possui um ponto periódico com período n. Se n < m, na ordenação de Sarkovskii, então f tem um ponto periódico de período m. E a prova do seguinte resultado devido a Bowen e Franks, [3]: Seja f : [0, 1] → [0, 1] contínua que possui um ponto periódico de período n= 2dm, onde m é ımpar e m > 1. Então, a entropia topológica h(f ) > 1/n log 2, e existe um Kn (independente de f ) tal que, se r = 2d k e k ≥ Kn , então f tem, pelo menos, 2r/n pontos de período primo r, que nos dará uma cota inferior para o número de pontos periódicos. Além disso, apresentar a construção de um difeomorfismo que não possui fontes ou poços periódicos. / The objective of this work is to present the proof of an important result known as Sarkovskii’s theorem which states: Let f : [0.1] → [0.1] be continuous and have a periodic point with period n. If n < m, in the Sarkovskii ordering then f has a periodic point of period m. And the proof the following result due to Bowen and Franks, [3]: Let f : [0.1] → [0.1] be continuous and have a periodic point of period n = 2d m, where m is odd and m > 1. Then the topological entropy h(f ) > log 2, and there is a Kn n r (independent of f ) such that, if r = 2d k and k ≥ Kn , then f has at least 2 n points of prime period r, that will give us a lower bound for the number of periodic points. Also, to present build of a diffeomorphism that has no periodic sources or sinks.
2

Topological order in three-dimensional systems and 2-gauge symmetry / Ordem topológica em sistemas tridimensionais e simetria de 2-gauge

Almeida, Ricardo Costa de 10 November 2017 (has links)
Topological order is a new paradigm for quantum phases of matter developed to explain phase transitions which do not fit the symmetry breaking scheme for classifying phases of matter. They are characterized by patterns of entanglement that lead to topologically depended ground state degeneracy and anyonic excitations. One common approach for studying such phases in two-dimensional systems is through exactly solvable lattice Hamiltonian models such as quantum double models and String-Net models. The former can be understood as the Hamiltonian formulation of lattice gauge theories and, as such, it is defined by a finite gauge group. However, not much is known about topological phases in tridimensional systems. Motivated by this we develop a new class of three-dimensional exactly solvable models which go beyond quantum double models by using finite crossed modules instead of gauge groups. This approach relies on a lattice implementation of 2-gauge theory to obtain models with a richer topological structure. We construct the Hamiltonian model explicitly and provide a rigorous proof that the ground state degeneracy is a topological invariant and that the ground states can only be characterized with nonlocal order parameters. / Ordem topológica é um novo paradigma para fases quânticas da matéria desenvolvido para explicar transições de fase que não se encaixam no esquema de classificação de fases da matéria por quebra de simetria. Estas fases são caracterizadas por padrões de emaranhamento que levam a uma degenerescência de estado fundamental topológica e a excitações anyonicas. Uma abordagem comum para o estudo de tais fases em sistemas bidimensionais é através de modelos Hamiltonianos exatamente solúveis de rede como os modelos duplos quânticos e modelos de String-Nets. O primeiro pode ser entendido como a formulação Hamiltoniana de teorias de gauge na rede e, desta maneira, é definido por um group de gauge finito. Entretanto, pouco é conhecido a respeito de fases topológicas em sistemas tridimensionais. Motivado por isso nós desenvolvemos uma nova classe de modelos tridimensionais exatamente solúveis que vai alem de modelos duplos quânticos pelo uso de módulos cruzados finitos no lugar de grupos de gauge. Esta abordagem se baseia numa implementação em redes de teoria de 2-gauge para obter modelos com uma estrutura topológica mais rica. Nós construímos o modelos Hamiltoniano explicitamente e fornecemos uma demonstração rigorosa de que a degenerescência de estado fundamental é um invariante topológico e que os estados fundamentais só podem ser caracterizados por parâmetros de ordem não locais.
3

Topological order in three-dimensional systems and 2-gauge symmetry / Ordem topológica em sistemas tridimensionais e simetria de 2-gauge

Ricardo Costa de Almeida 10 November 2017 (has links)
Topological order is a new paradigm for quantum phases of matter developed to explain phase transitions which do not fit the symmetry breaking scheme for classifying phases of matter. They are characterized by patterns of entanglement that lead to topologically depended ground state degeneracy and anyonic excitations. One common approach for studying such phases in two-dimensional systems is through exactly solvable lattice Hamiltonian models such as quantum double models and String-Net models. The former can be understood as the Hamiltonian formulation of lattice gauge theories and, as such, it is defined by a finite gauge group. However, not much is known about topological phases in tridimensional systems. Motivated by this we develop a new class of three-dimensional exactly solvable models which go beyond quantum double models by using finite crossed modules instead of gauge groups. This approach relies on a lattice implementation of 2-gauge theory to obtain models with a richer topological structure. We construct the Hamiltonian model explicitly and provide a rigorous proof that the ground state degeneracy is a topological invariant and that the ground states can only be characterized with nonlocal order parameters. / Ordem topológica é um novo paradigma para fases quânticas da matéria desenvolvido para explicar transições de fase que não se encaixam no esquema de classificação de fases da matéria por quebra de simetria. Estas fases são caracterizadas por padrões de emaranhamento que levam a uma degenerescência de estado fundamental topológica e a excitações anyonicas. Uma abordagem comum para o estudo de tais fases em sistemas bidimensionais é através de modelos Hamiltonianos exatamente solúveis de rede como os modelos duplos quânticos e modelos de String-Nets. O primeiro pode ser entendido como a formulação Hamiltoniana de teorias de gauge na rede e, desta maneira, é definido por um group de gauge finito. Entretanto, pouco é conhecido a respeito de fases topológicas em sistemas tridimensionais. Motivado por isso nós desenvolvemos uma nova classe de modelos tridimensionais exatamente solúveis que vai alem de modelos duplos quânticos pelo uso de módulos cruzados finitos no lugar de grupos de gauge. Esta abordagem se baseia numa implementação em redes de teoria de 2-gauge para obter modelos com uma estrutura topológica mais rica. Nós construímos o modelos Hamiltoniano explicitamente e fornecemos uma demonstração rigorosa de que a degenerescência de estado fundamental é um invariante topológico e que os estados fundamentais só podem ser caracterizados por parâmetros de ordem não locais.

Page generated in 0.06 seconds