Le premier chapitre montre par des méthodes toriques ($G-$graphes) que pour tout entier positif $n$, le quotient de l'espace affine à $n$ dimensions par le groupe cyclique $G_n$ d'ordre $2^n-1$ admet le $G_n$-schema de Hilbert comme résolution lisse crepante. Le deuxième chapitre contient des résultats sur les champs algébriques (construction du champ algébrique lisse associé à une log-paire). Le troisième chapitre montre l'équivalence entre la catégorie dérivée bornée des faisceaux cohérents $G_n-$équivariants sur l'espace affine et celle des faisceaux cohérents sur la résolution $G_n-$Hilb. Chapitre 4 donne une réalisation géométrique de la conjecture de Broué via la correspondance de McKay. L'annexe contient des résultats sur les groupes trihédraux, y compris un programme magma.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00012064 |
Date | 14 December 2005 |
Creators | Sebestean, Magda |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds