Return to search

Modèles à Facteurs Conditionnellement Hétéroscédastiques et à Structure Markovienne Cachée pour les Séries Financières

Dans cette thèse nous proposons une nouvelle approche dans le cadre des modèles d'évaluation des actifs financiers permettant de tenir compte de deux aspects fondamentaux qui caractérisent la volatilité latente: co-mouvement des rendements financiers conditionnellement hétéroscédastiques et changement de régime. En combinant les modèles à facteurs conditionnellement hétéroscédastiques avec les modèles de chaîne de Markov cachés, nous dérivons un modèle multivarié localement linéaire et dynamique pour la segmentation et la prévision des séries financières. Nous considérons, plus précisément le cas où les facteurs communs suivent des processus GQARCH univariés. L'algorithme EM que nous avons développé pour l'estimation de maximum de vraisemblance et l'inférence des structures cachées est basé sur une version quasi-optimale du filtre de Kalman combinée avec une approximation de Viterbi. Les résultats obtenus sur des simulations, aussi bien que sur des séries financières sont prometteurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00089558
Date05 July 2006
CreatorsSaidane, Mohamed
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0014 seconds