Return to search

Amélioration des solveurs multifrontaux à l'aide de représentations algébriques rang-faible par blocs

Nous considérons la résolution de très grands systèmes linéaires creux à l'aide d'une méthode de factorisation directe appelée méthode multifrontale. Bien que numériquement robustes et faciles à utiliser (elles ne nécessitent que des informations algébriques : la matrice d'entrée A et le second membre b, même si elles peuvent exploiter des stratégies de prétraitement basées sur des informations géométriques), les méthodes directes sont très coûteuses en termes de mémoire et d'opérations, ce qui limite leur applicabilité à des problèmes de taille raisonnable (quelques millions d'équations). Cette étude se concentre sur l'exploitation des approximations de rang-faible dans la méthode multifrontale, pour réduire sa consommation mémoire et son volume d'opérations, dans des environnements séquentiel et à mémoire distribuée, sur une large classe de problèmes. D'abord, nous examinons les formats rang-faible qui ont déjà été développé pour représenter efficacement les matrices denses et qui ont été utilisées pour concevoir des solveur rapides pour les équations aux dérivées partielles, les équations intégrales et les problèmes aux valeurs propres. Ces formats sont hiérarchiques (les formats H et HSS sont les plus répandus) et il a été prouvé, en théorie et en pratique, qu'ils permettent de réduire substantiellement les besoins en mémoire et opération des calculs d'algèbre linéaire. Cependant, de nombreuses contraintes structurelles sont imposées sur les problèmes visés, ce qui peut limiter leur efficacité et leur applicabilité aux solveurs multifrontaux généraux. Nous proposons un format plat appelé Block Rang-Faible (BRF) basé sur un découpage naturel de la matrice en blocs et expliquons pourquoi il fournit toute la flexibilité nécéssaire à son utilisation dans un solveur multifrontal général, en terme de pivotage numérique et de parallélisme. Nous comparons le format BRF avec les autres et montrons que le format BRF ne compromet que peu les améliorations en mémoire et opération obtenues grâce aux approximations rang-faible. Une étude de stabilité montre que les approximations sont bien contrôlées par un paramètre numérique explicite appelé le seuil rang-faible, ce qui est critique dans l'optique de résoudre des systèmes linéaires creux avec précision. Ensuite, nous expliquons comment les factorisations exploitant le format BRF peuvent être efficacement implémentées dans les solveurs multifrontaux. Nous proposons plusieurs algorithmes de factorisation BRF, ce qui permet d'atteindre différents objectifs. Les algorithmes proposés ont été implémentés dans le solveur multifrontal MUMPS. Nous présentons tout d'abord des expériences effectuées avec des équations aux dérivées partielles standardes pour analyser les principales propriétés des algorithms BRF et montrer le potentiel et la flexibilité de l'approche ; une comparaison avec un code basé sur le format HSS est également fournie. Ensuite, nous expérimentons le format BRF sur des problèmes variés et de grande taille (jusqu'à une centaine de millions d'inconnues), provenant de nombreuses applications industrielles. Pour finir, nous illustrons l'utilisation de notre approche en tant que préconditionneur pour la méthode du Gradient Conjugué.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00934939
Date28 October 2013
CreatorsWeisbecker, Clement
PublisherInstitut National Polytechnique de Toulouse - INPT
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds