Return to search

Développement de méthodes d'apprentissage profond pour l'aide au diagnostic du cancer par spectrométrie de masse

Thèse ou mémoire avec insertion d'articles / La spectrométrie de masse est devenue ces dernières années une technologie incontournable dans l'analyse à large échelle des composés cellulaires. En recherche clinique, les études qui utilisent cette technologie sont de plus en plus répandues. Ces études visent principalement deux objectifs. Le premier est le diagnostic de maladies qui passe par la classification d'échantillons provenant de différents états expérimentaux. Le deuxième objectif est l'identification de signatures des maladies étudiées qui passe par la mise en évidence de biomarqueurs. Cependant, la grande dimensionnalité, la présence de bruit et la complexité des données liées à ce type d'analyse nécessitent le développement d'outils computationnels performants. La récente émergence d'algorithmes d'apprentissage automatique a révolutionné de nombreux domaines de recherche y compris le diagnostic et l'identification de biomarqueurs. Néanmoins, ces algorithmes ne permettent pas toujours d'obtenir des résultats satisfaisants car ils nécessitent au préalable des étapes fastidieuses de prétraitement et de sélection d'attributs. Tandis que les algorithmes d'apprentissage profond et plus particulièrement les réseaux de neurones ont la capacité d'extraire automatiquement les caractéristiques pertinentes à partir de données brutes. Cette thèse vise à concevoir des algorithmes à base de réseaux de neurones pour le diagnostic du cancer et l'identification de biomarqueurs à partir de données protéomiques et métabolomiques. Ce travail est présenté sous la forme de trois contributions. La première, nommée apprentissage cumulatif, est une nouvelle méthodologie à base de réseaux de neurones convolutifs développée pour le diagnostic dans un contexte de rareté de données. La deuxième contribution est une nouvelle méthodologie à base de réseaux de neurones récurrents développée pour le diagnostic précoce. Ces deux méthodologies ont été comparées à des approches d'apprentissage automatique traditionnellement utilisées pour les données de spectrométrie de masse. Non seulement nos méthodologies ont été plus performantes que les approches traditionnelles. Elles ont eu également l'avantage d'être efficaces sur les données brutes et ont permis ainsi de s'affranchir des étapes coûteuses de prétraitement et de sélection d'attributs. De plus, elles ont eu un temps d'exécution de quelques secondes les rendant compatibles avec une analyse clinique rapide. Pour ce qui est de la troisième contribution, nommée SpectraLIME, elle consiste en une méthodologie d'interprétation des réseaux de neurones. Elle a identifié des régions spectrales d'intérêt contenant des biomarqueurs connus et des biomarqueurs candidats pouvant constituer de nouvelles cibles diagnostiques ou thérapeutiques. Nous avons pu démontrer tout au long de cette thèse la puissance des algorithmes d'apprentissage profond appliqués aux données omiques. Ce travail illustre l'intérêt de la spectrométrie de masse comme un outil puissant qui améliore remarquablement l'aide à la décision clinique. / In recent years, mass spectrometry has become an essential technology for large-scale analysis of cellular compounds. In clinical research, studies using this technology are becoming moreand more widespread. These studies have two main objectives. First, the diagnosis of diseases through the classification of samples from different experimental conditions. The second objective is the identification of signatures of the studied diseases through the detection of biomarkers. However, the high dimensionality, the presence of noise and the complexity of the data related to this type of analysis require the development of powerful computational tools. The recent emergence of machine learning algorithms has revolutionized many research areas including diagnosis and biomarker identification. However, these algorithms do not always provide satisfactory results because they require tedious pre-processing and feature selection steps. While deep learning algorithms and more particularly neural networks have the ability to automatically extract relevant features from raw data. This thesis aims at designing neural network algorithms for cancer diagnosis and biomarkers identification from proteomic and metabolomic data. This work is presented in the form of three contributions. The first one, named cumulative learning, is a new methodology based on convolutional neural networks developed for diagnosis in a context of data scarcity. The second contribution is a new methodology based on recurrent neural networks developed for early diagnosis. These two methodologies were compared to machine learning approaches traditionally used for mass spectrometry data. Not only our methodologies outperformed traditional approaches, but they also had the advantage of being effective on raw data and thus avoided costly pre-processing and feature selection steps. Moreover, they had an execution time of a few seconds, making them compatible with rapid clinical analysis. The third contribution, named SpectraLIME, consists of a methodology of neural networks interpretability. It identified spectral regions of interest containing known biomarkers and candidate biomarkers that could constitute new diagnostic or therapeutic targets. Throughout this thesis, we were able to demonstrate the power of deep learning algorithms applied to omics data. This work illustrates the interest of mass spectrometry as a valuable tool that remarkably improves clinical decision support.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/125384
Date20 November 2023
CreatorsSeddiki, Khawla
ContributorsDroit, Arnaud
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxii, 176 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0028 seconds