L’utilisation des alliages de titane dans de nombreuses applications (transport, énergie, chimie,...) permet des gains de masse importants en tirant profit du rapport propriétés mécaniques/masse volumique qui est avantageux pour ce type de matériaux. L’utilisation de ces alliages dans des environnements à hautes températures (T>500°C) nécessite de se préoccuper de leur comportement et de comprendre les mécanismes de dégradation dans ces conditions sévères. Certains facteurs peuvent influencer le comportement des alliages de titane en oxydation, comme l’application de cycles de chauffage/refroidissement, la présence de vapeur d’eau ou la présence de sels, selon les conditions d’utilisation.Ce travail de thèse s’est attaché à comprendre les mécanismes d’oxydation d’un alliage de titane utilisé dans l’aéronautique : l’alliage Ti6242S. Il a été étudié à 560°C sous air, sous air humide et en présence de dépôts solides de sel(s) de type NaCl et/ou Na2SO4. Pour cela, des oxydations de longues durées avec et sans dépôts solides de sels ont été réalisées. Les résultats obtenus montrent que la présence de NaCl provoque une dégradation importante du comportement en oxydation des échantillons. La dissolution d’oxygène dans le métal observée sous air ne se produit plus en présence de dépôts de sels. En revanche, une oxydation interne de l’alliage a lieu et des fissures apparaissent dans la profondeur du substrat métallique. La dégradation du matériau est attribuée à la présence de dichlore et à la formation de chlorures métalliques volatiles. Un mécanisme réactionnel a été proposé afin d’expliquer l’effet néfaste des dépôts de NaCl. L’effet d’un dépôt de sels mixte NaCl/Na2SO4 sur l’oxydation de l’alliage Ti6242S est cependant moins marqué.L’évolution des propriétés mécaniques de l’alliage Ti6242S a également été étudiée après oxydation. Une simple oxydation de 100 h sous air provoque une diminution importante de la ductilité du matériau à cause de la zone de dissolution d’oxygène formée pendant l’oxydation. En présence d’un dépôt de NaCl et après 100h d’oxydation à 560°C, la perte de ductilité est encore plus importante et la rupture de l’éprouvette intervient dès la fin du domaine élastique. Dans ces conditions, la pièce perd une partie de sa section porteuse et la limite élastique et le module élastique du matériau restant sont fortement impactés. La présence d’un dépôt mixte NaCl/Na2SO4 pendant l’oxydation a un effet moins marqué sur les propriétés mécaniques du matériau, en accord avec la plus faible réactivité de l’alliage Ti6242S avec ce type de dépôt. Les mécanismes inhérents au changement de propriétés mécaniques sont expliqués dans le travail de thèse. / The use of titanium alloys in many applications (transport, energy, chemistry,...) allows significant weight savings in relation to the good mechanical properties/density ratio of these materials. Since titanium alloys are employed at high temperatures (T>500°C), their behavior in such conditions has to be studied in severe conditions in order to understand degradation mechanisms. Moreover, some specific conditions can be met during application, like thermal cycling, water vapour or presence of salts. These parameters are known to influence oxidation behavior of titanium alloys.In this thesis work, oxidation behavior of an aeronautics titanium alloy (Ti6242S) has been studied in air and moist air at 560°C. The effect of solid salt deposits (NaCl and/or Na2SO4) on the oxidation behavior of Ti6242S alloy has also been taken into account. Ti6242S samples were oxidized at 560°C for oxidation times up to 19 000 hours with or without solid salt deposits. NaCl deposit resulted in an important deterioration of Ti6242S alloy behavior at this temperature. Oxygen dissolution in the metal was no longer observed compared to ageing in air, but internal oxidation of the alloy could be evidenced, and cracks were observed deeply into the metallic substrate after oxidation. The corrosion resistance decrease in such conditions was attributed to the presence of chlorine and formation of volatile metallic chlorides due to the presence of NaCl. A degradation mechanism based on active oxidation of Ti6242S alloy exposed to NaCl salt was proposed. The second salt deposit tested consisted in a mixed NaCl/Na2SO4 salt deposit. The harmful effect of this salt deposit on the oxidation behavior of Ti6242S alloy was lower than that of a simple NaCl deposit.Mechanical properties of Ti6242S alloy exposed to solid salt deposits at 560°C were then studied. A simple oxidation in air for 100 hours without salt deposit resulted in an important loss of ductility of the tested samples due to the presence of oxygen solid solution into the metal. The same oxidation time caused an even more important loss of ductility for the samples covered by NaCl deposits. In this case, sample failure occurred at the end of the elastic deformation domain. Elastic modulus and yield strength were also strongly decreased. Mixed NaCl/Na2SO4 deposit exhibited a lower impact on the mechanical properties of the oxidized Ti6242S sample, in accordance with the lower reactivity of Ti6242S alloy with this type of salt deposit. Mechanisms explaining Ti6242S alloy mechanical behavior in such conditions were explained in this thesis work.
Identifer | oai:union.ndltd.org:theses.fr/2018UBFCK035 |
Date | 12 October 2018 |
Creators | Berthaud, Maxime |
Contributors | Bourgogne Franche-Comté, Chevalier, Sébastien, Popa, Ioana |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds