L’objectif de cette thèse est d’étudier, sous divers aspects, le processus de formation d’amyloïde à partir de la polymérisation de protéines. Ces phénomènes, aussi bien in vitro que in vivo, posent des questions de modélisation mathématique. Il s’agit ensuite de conduire une analyse des modèles obtenus. Dans la première partie nous présentons des travaux effectués en collaboration avec une équipe de biologistes. Deux modèles sont introduits, basés sur la théorie en vigueur du phénomène Prions, que nous ajustons aux conditions expérimentales. Ces modèles nous permettent d’analyser les données obtenues à partir d’expériences conduites en laboratoire. Cependant celles-ci soulèvent certains phénomènes encore inexpliqués par la théorie actuelle. Nous proposons donc un autre modèle qui corrobore les données et donne une nouvelle approche de la formation d’amyloïde dans le cas du Prion. Nous terminons cette partie par l’analyse mathématique de ce système compose d’une infinité d’équations différentielles. Ce dernier consiste en un couplage entre un système de type Becker-Doring et un système de polymérisation-fragmentation discrète. La seconde partie s’attache à l’analyse d’un nouveau modèle pour la polymérisation de protéines dont la fragmentation est sujette aux variations du fluide environnant. L’idée est de décrire au plus près les conditions expérimentales mais aussi d’introduire de nouvelles quantités macroscopiques mesurables pour l’étude de la polymérisation. Le premier chapitre de cette partie présente une description stochastique du problème. On y établit les équations du mouvement des polymères et des monomères (de type Langevin) ainsi que le formalisme pour l’étude du problème limite en grand nombre. Le deuxième chapitre pose le cadre fonctionnel et l’existence de solutions pour l équation de Fokker-Planck- Smoluchowski décrivant la densité de configuration des polymères, elle-même couplée a une équation de diffusion pour les monomères. Le dernier chapitre propose une méthode numérique pour traiter ce problème. On s’intéresse dans la dernière partie à la modélisation de la maladie d’Alzheimer. On construit un modèle qui décrit d’une part la formation de plaque amyloïde in vivo, et d’autre part les interactions entre les oligomères d’Aβet la protéine prion qui induiraient la perte de mémoire. On mène l’analyse mathématique de ce modèle dans un cas particulier puis dans un cas plus général ou le taux de polymérisation est une loi de puissance / The aim of this thesis is to study, under several aspects, the formation of amyloids from proteins polymerization. The mathematical modelling of these phenomena in the case of in vitro or in vivo polymerisation remains questioned. We then propose here several models, which are also investigated from theoritical and numerical point of view. In the first part we present works done in collaboration with biologists. We propose two models based on the current theory on Prion phenomena that are designed for specific experimental conditions. These models allow us to analyse the experimental data obtained in laboratory and raise phenomena that remain unexplained by the theory. Then, from these results and biophysical considerations, we introduce a model which corroborates with data and provides a new approach on the amyloid formation in the particular case of Prion. This part is ended by the mathematical analysis of the model consisting of an infinite set of differentials equations. The system analysed is a Becker-Doring system coupled to a discrete growth-fragmentation system. The second part is dedicated to the analysis of a new model for polymerization of proteins with fragmentation subject to the surrounding variations of the fluid. Thus, we propose a model which is close to the experimental conditions and introduce new measurable macroscopic quantities to study the polymerization. The first introductory chapter states the stochastic description of the problem. We give the equations of motion for each polymers and monomers as well as a general formalism to study the limit in large number. Next, we give the mathematical framework and prove the existence of solutions to the Fokker-Planck-Smoluchowski equation for the configurational density of polymers coupled to the diffusion equation for monomers. The last chapter provides a numerical method adapted to this problem with numerical simulations In the last part, we are interested in modelling Alzheimer’s disease. We introduce a model that describes the formation of amyloids plaques in the brain and the interactions between Aβ-oligomers and Prion proteins which might be responsible of the memory impairment. We carry out the mathematical analysis of the model. Namely, for a constant polymerization rate, we provide existence and uniqueness together with stability of the equilibrium. Finally we study the existence in a more general and biological relevant case, that is when the polymerization depends on the size of the amyloid
Identifer | oai:union.ndltd.org:theses.fr/2012LYO10135 |
Date | 17 September 2012 |
Creators | Hingant, Erwan |
Contributors | Lyon 1, Ciuperca, Ionel Sorin, Liautard, Jean-Pierre, Pujo-Menjouet, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds