Alzheimer’s Disease (AD) is a complex brain disorder that affects at least one in every ten persons aged 65 and above worldwide. The pathogenesis of this disorder remains elusive. In this work, we utilized a rich set of publicly available gene expression data to elucidate the genes and molecular processes that may underlie its pathogenesis. We developed a new ranking score to prioritize molecular pathways enriched in differentially expressed genes during AD. After applying our new ranking score, GO categories such as cotranslational protein targeting to membrane, SRP-dependent cotranslational protein targeting to membrane, and spliceosomal snRNP assembly were found to be significantly associated with AD. We also confirm the protein-protein interaction between APP, NPAS4 and ARNT2 and explain that this interaction could be implicated in AD. This interaction could serve as a theoretical framework for further analyses into the role of NPAS4 and other immediate-early genes in AD pathogenesis. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_44431 |
Contributors | Kwakye, Alexander (author), Li, Zhongwei (Thesis advisor), Florida Atlantic University (Degree grantor), Department of Biomedical Science, Charles E. Schmidt College of Medicine |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 119 p., online resource |
Rights | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds