Submitted by Sara Ribeiro (sara.ribeiro@ucb.br) on 2017-11-25T11:49:15Z
No. of bitstreams: 1
WeslleyRodriguesSepulvidaDissertacao2016.pdf: 1633691 bytes, checksum: 6449c77ed21fbc52e7c304fd7364796d (MD5) / Approved for entry into archive by Sara Ribeiro (sara.ribeiro@ucb.br) on 2017-11-25T11:49:41Z (GMT) No. of bitstreams: 1
WeslleyRodriguesSepulvidaDissertacao2016.pdf: 1633691 bytes, checksum: 6449c77ed21fbc52e7c304fd7364796d (MD5) / Made available in DSpace on 2017-11-25T11:49:41Z (GMT). No. of bitstreams: 1
WeslleyRodriguesSepulvidaDissertacao2016.pdf: 1633691 bytes, checksum: 6449c77ed21fbc52e7c304fd7364796d (MD5)
Previous issue date: 2016-08-29 / Distance Education has grown along the years. Several educational institutions have been
offering courses of internal improvement and qualification, as well as extension, undergraduate
and postgraduate courses. The increase in the number of courses and the significant raise
in the number of students result in new challenges to the educational institutions. The high
dropout rates, common in Distance Education courses, is one of the crucial problems the institutions
have to deal with. In this context, Data Mining is one of the main approaches for the
development of predictive methods of evasion. The present paper aims an analysis of the Distance
Education evasion in a traditional Midwest Brazilian University. The study intends to
identify the behavior of the students who have dropped out undergraduate courses, in order to
provide subsidies for the subjects involved in the teaching-learning process. As a preventive
solution to the evasion issue, it is understood that proper communication with the students
who are about to evade can lead to changes that contribute to minimize the problem. This
study is presented in four parts: (i) literature review based on theoretical framework on Distance
Education evasion, Virtual Learning Environments, Knowledge Discovery in Database
(KDD) and Education Data Mining; (ii) an analysis of the Virtual Learning Environment institution
database applying KDD techniques to identify the course abandonment behavior;
(iii) development and validation of a model for predictive identification of students prone to
evade; (iv) management actions to mitigate the problem. The results show that, when applying
KDD to the variant data in time, 30 days after the beginning of the classes, it is possible to
significantly predict evasion. From the results, an evasion prediction model was developed, as
well as an evasion combat model. / A educa????o a dist??ncia (EAD) tem crescido nos ??ltimos anos. V??rias institui????es de ensino
t??m ofertado cursos que v??o desde aperfei??oamentos e capacita????es internas at?? cursos de
extens??o, gradua????o e p??s-gradua????o. Com o crescimento da oferta de cursos e o aumento
significativo dos estudantes, as institui????es educacionais se colocam frente a novos desafios,
entre eles o combate das altas taxas de evas??o, comum em cursos na modalidade EAD. Nesse
sentido, a Minera????o de Dados ?? uma das abordagens que vem sendo explorada para o desenvolvimento
de m??todos preditivos de evas??o. O presente trabalho prop??e uma an??lise da evas??o
no contexto da EAD de uma tradicional universidade do Centro Oeste. O estudo busca
identificar comportamentos dos estudantes que abandonaram cursos de gradua????o nessa modalidade,
de maneira a fornecer subs??dios preditivos para os atores envolvidos no processo de
ensino-aprendizagem de forma a apoiar a tomada de decis??es preventivas a respeito da evas??o.
Parte-se do pressuposto de que interven????es junto aos estudantes propensos a evadir podem
acarretar mudan??a no comportamento via Ambiente Virtual de Aprendizagem (AVA)
que contribuem para minimizar a evas??o. Este trabalho ?? dividido em quatro partes: (i) uma
revis??o da literatura, para embasamento te??rico, sobre evas??o no ??mbito da EAD, ambientes
virtuais de aprendizagem (AVA), knowledge Discovery in Database (KDD) e Education Data
Mining; (ii) an??lise da base de dados do AVA utilizado pela institui????o aplicando t??cnicas de
KDD, para identifica????o do comportamento de abandono do curso; (iii) gera????o e valida????o
de um modelo para identifica????o preditiva de estudantes propensos a evadir; (iv) A????es Gerenciais
propostas para mitiga????o do problema. Os resultados mostram que ao aplicar o KDD
nos dados variantes no tempo, com 30 dias ap??s o in??cio das aulas, ?? poss??vel predizer evas??o
com precis??o significativa. A partir dos resultados obtidos, gerou-se um modelo de predi????o
de evas??o bem como um modelo de tomada de decis??o e a????es de combate ?? evas??o.
Identifer | oai:union.ndltd.org:IBICT/oai:bdtd.ucb.br:tede/2318 |
Date | 29 August 2016 |
Creators | Sep??lvida, Weslley Rodrigues |
Contributors | Ferneda, Edilson, Hello, Fernando Antonio |
Publisher | Universidade Cat??lica de Bras??lia, Programa Strictu Sensu em Gest??o do Conhecimento e da Tecnologia da Informa????o, UCB, Brasil, Escola de Educa????o, Tecnologia e Comunica????o |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UCB, instname:Universidade Católica de Brasília, instacron:UCB |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds