Return to search

Transport thermique dans des membranes très minces de SiN amorphe / Thermal transport in very thin amorphous SiN membranes

Afin de comprendre les mécanismes de transport de la chaleur dans des films très minces des matériaux amorphes, nous avons proposé et démontré expérimentalement une nouvelle technique de mesure des propriétés thermiques de membranes très minces. Cette technique consiste à coupler la méthode 3 oméga avec la géométrie Völklein (membrane suspendue allongée). L'échantillon d'intérêt est alors monté dans un pont de Wheatstone spécifique afin d'éliminer le signal électrique 1 oméga. Cette technique permet de mesurer avec une très haute sensibilité le signal thermique 3 oméga et donc les propriétés thermiques des membranes. Le nitrure de silicium étudié dans ce travail constitue un matériau amorphe typique. Nous avons été intéressés par l'étude du transport thermique dans un tel système de dimensions réduites en fonction de la température et du stress intrinsèque qui présente dans les films. Afin d'atteindre cet objectif, les membranes de nitrure de silicium de stress élevé et de faible niveau de stress ont été mesurées respectivement pour une épaisseur de 50 nm et 100 nm. Le comportement global de la conductivité thermique mesurée est une croissance quand la température augmente, une tendance généralement constaté pour un matériau amorphe. Le data de membrane de 50 nm présente une conductivité thermique inférieure à celle du 100 nm, ce qui est en accord avec l'effet des dimensions réduites. La chaleur spécifique mesurée s'écarte sensiblement de la loi en T3 de Debye. Cela est particulièrement important en dessous de 100 K où la chaleur spécifique est plus élevé que celle prévue par la modèle Debye. Ces résultats expérimentaux sont en excellent accord avec les prévisions d'un model théorique qui tient en compte de l'effet TLS (Two Level System) qui présente dans le matériaux amorphe. Il a été montré expérimentalement que le stress n'a pas d'effet sur la chaleur spécifique de nitrure de silicium. De plus, nous avons démontré que le stress n'affecte pas la dissipation dans nitrure de silicium, et la dissipation par dilution semble être la cause de la réduction de la dissipation. Par conséquent, le stress ne devrait pas affecter la conductivité thermique du nitrure de silicium, ce qui est cohérent avec les résultats expérimentaux. En terme d'application de la méthode 3 oméga-Völklein, nous avons démontré que la membrane de SiN peut être utilisée comme capteur thermique spécifique pour caractériser un autre matériau déposée sur la face arrière de la membrane. Nous avons testé ce modèle pour mesurer les propriétés thermiques d'un film de 200 nm de Bi2Te3. Les résultats obtenus sont en excellent accord avec la littérature. Comme le SiN est un matériau isolant, ce modèle est capable de mesurer des films très minces quelle que soit sa nature, isolant, semi conducteur ou métallique. / In order to understand the mechanisms of the heat transport in very thin amorphous films, we have proposed and experimentally demonstrated a new technique to measure the thermal properties of very thin membranes. This technique consists in coupling the 3 omega method to the Völklein geometry (elongated suspended membrane). The sample of interest is then implemented into a specific Wheatstone bridge in order to eliminate the electrical 1 omega signal. This technique allows the measurement with very high sensitivity of the 3 omega thermal signal and therefore the thermal properties of the membranes. Silicon nitride membranes studied in this work constitutes a typical amorphous material. We have been interested in the study on the thermal transport in such system of reduced dimensions as function of temperature and intrinsic modified stress. In order to accomplish this goal, silicon nitride membranes of high stress and low stress have been measured respectively with the thickness 50 nm and 100 nm. The overall behaviour of the measured thermal conductivity is an increase as the temperature is increased, a trend commonly found for amorphous material. The 50 nm data show thermal conductivity less than that of the 100 nm, this is consistent of the effect of reduced dimensions. The measured heat capacity is apparently higher than what is expected from the Debye phonon heat capacity. This is especially significant below 100 K where the heat capacity deviates significantly from the T3 Debye law. A theoretical model taking into account the presence of TLS in amorphous materials is then used to fit the experimental data. The theoretical fits are in excellent agreement with the experimental results. It was seen experimentally that stress has no effect on the specific heat of silicon nitride. Moreover, we have demonstrated that stress does not affect the dissipation in silicon nitride, and the dissipation dilution seems to be the sole cause of the reduction of dissipation by an applied stress in high stress silicon nitride. Therefore, stress should not affect thermal conductivity of silicon nitride, and this is consistent with the experimental results. As application for the 3 omega-Völklein method, we have demonstrated that the SiN membrane can be used as specific thermal sensor to characterize another material deposited on the backside of the membrane. We have tested this model to measure thermal properties of Bi2Te3 film and the results are in excellent agreement with literature. As the SiN is an insulator, this model is able to measure very thin films whatever its nature, insulator, semi conductor or metallic.

Identiferoai:union.ndltd.org:theses.fr/2013GRENY046
Date12 December 2013
CreatorsFtouni, Hossein
ContributorsGrenoble, Bourgeois, Olivier, Jomaah, Jalal
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds