Made available in DSpace on 2016-08-29T15:37:10Z (GMT). No. of bitstreams: 1
tese_8325_Dissertacao_Jeangelis.pdf: 1337655 bytes, checksum: 22014242540a6c4b7c62551dd6929b42 (MD5)
Previous issue date: 2014-11-28 / O inventário florestal é o principal método para a obtenção de informações quantitativas e qualitativas sobre as florestas. Entretanto, ao se trabalhar com grandes áreas, há o inconveniente das variáveis analisadas apresentarem grande heterogeneidade, sendo necessário adotar uma maior intensidade amostral. Nestes casos, uma alternativa para a realização dos inventários florestais é a estratificação da área em subpopulações mais homogêneas quanto a variável de interesse, garantindo estimativas mais precisas com uma menor intensidade amostral. Com isso, este estudo teve como objetivo realizar a estratificação de florestas de eucalipto considerando variáveis que descrevem a forma do fuste. Para tanto, foi utilizada uma base de dados contendo informações de 47.770ha de povoamentos de clones do gênero Eucalyptus.Osplantios são compostos porquatorze clones plantados sobtrês diferentes regimes de manejo (alto fuste, dividido em áreas de implantação e reforma, e talhadia) e quatro espaçamentos de plantios (6, 9, 10 e 16m2 de área útil por planta), com idades variando de quatroa seis anos. Inicialmente, foi realizada a estratificação da área, gerando um total de quarenta estratos, nos quais foram realizados a cubagem rigorosa e os inventários florestais. Em seguida, foram aplicados os métodos de agrupamento por similaridade de perfil, análise de componentes principais, classes de quociente de forma, classes de fator de forma artificial e redes neurais artificiais, gerando novos estratos de amostragem.A título de comparação, também foram consideradas amostragem sem estratificação, a estratificação completa (40 estratos iniciais), estratificação considerando a idade e o espaçamento, e estratificação apenas pela idade.Em seguida, foi realizado o cálculo dos estimadores populacionais para o inventário florestal, considerando cada método de estratificação apresentado, bem como o custo de realização do inventário florestal e cubagem rigorosa. Dentre os métodos propostos para estratificação dos povoamentos, os que apresentaram melhores resultados, quanto a precisão, foi o agrupamento porredes neurais artificiais e o agrupamento porclasses de quociente de forma (K0,5H). Em relação aos custos, o método de agrupamento por redes neurais artificiais também obteve melhores resultados, seguido pelo agrupamento pelo método da similaridade de perfis. Analisando conjuntamente precisão e custo, dentre todos os métodos avaliados, a utilização de redes neurais artificiais se mostrou a alternativa mais eficiente para a estratificação de florestas.
Palavras-chave:Amostragem estratificada, inventário florestal, redes neurais artificiais. / The forest inventory is the main method to obtain quantitative and qualitative
information on forests. However, when working with large areas, there is the
inconvenience of the variables present great heterogeneity, being necessary to
adopt a higher sampling intensity. In these cases, an alternative for the
realization of forest inventories is the stratification of the area in more
homogeneous subpopulations as the variable of interest, ensuring more
accurate estimates with a lower sampling intensity. This study aimed to stratify
eucalyptus forests considering variables that describe bole form. For this
purpose, we used a database containing information of 47.770 ha with clonal
Eucalyptus stands. The stands consisted of fourteen clones with three different
management regimes (high forest, divided into areas of first and second
rotations, and coppice) and four spacings (6, 9, 10 and 16 m2 per plant), aged
four to six years. Initially the area stratification was performed, yielding forty
strata, in which were performed the scaling and forest inventories. Then, were
applied the clustering methods of profile similarity, principal component
analysis, class of form quotient, class of form factor and artificial neural
networks, generating new sampling strata. For comparison, were also
considered sampling without stratification, the complete stratification (40 initial
strata), stratification considering the age and spacing and stratification by age
only. Then was conducted the calculation of population estimators for forest
inventory considering each stratification method presented, as well as the cost
of conducting a forest inventory and scaling. Among the methods proposed to
stratify the stands, the ones that showed the best results in accuracy, was the
clustering by artificial neural networks and clustering by class of form quotient
(K0,5H). Regarding costs, the clustering method by artificial neural networks has
also achieved best results, followed by clustering by profile similarity method.
8
By analyzing precision and cost, among all methods, the use of artificial neural
networks proved to be the most efficient alternative to the stratification of
forests
Identifer | oai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/5051 |
Date | 28 November 2014 |
Creators | Santos, Jeangelis Silva |
Contributors | Binoti, Daniel Henrique Breda, Zanetti, Sidney Sára, Chichorro, José Franklim, Silva, Gilson Fernandes da, Mendonça, Adriano Ribeiro de |
Publisher | Universidade Federal do Espírito Santo, Mestrado em Ciências Florestais, Programa de Pós-Graduação em Ciências Florestais, UFES, BR |
Source Sets | IBICT Brazilian ETDs |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | text |
Source | reponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds