Motivated by the huge success of the applications of the abstract fractional equations in many areas of science and engineering, and by the unsolved question in this theory, in this work we study several matters related to abstract fractional Cauchy problems of order \'alpha\' \'it belongs\' (0, 1). We search to answer some questions that were open: for instance, we analyze the existence of local mild solutions for the problem, and its possible continuation to a maximal interval of existence. The case of critical nonlinearities and corresponding regular mild solutions is also studied. Finally, by establishing some general comparison results, we apply them to conclude the global well-posedness of a fractional partial differential equation coming from heat conduction theory / Motivados pelo êxito das aplicações nas equações abstratas em muitas áreas da ciência e da engenharia, e pelas perguntas ainda abertas, neste trabalho estudamos questões relativas aos problemas fracionários abstratos de Cauchy de ordem \'alpha\' \'pertence a\' (0, 1). Buscamos responder algumas perguntas: por exemplo, analisamos a existência de soluções locais fracas do problema e sua possível continuação em um intervalo maximal de existência. O caso da não-linearidade crítica e sua correspondente solução regular fraca também é abordado. Por último, mediante o estabelecimento de alguns resultados gerais de comparação, chegamos a conclusão de que as soluções de uma equação diferencial parcial fracionária, proveniente da teoria de condução de calor, existe globalmente
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06062013-145531 |
Date | 16 May 2013 |
Creators | Paulo Mendes de Carvalho Neto |
Contributors | Alexandre Nolasco de Carvalho, Gabriela Del Valle Planas, José Antonio Langa Rosado, Pedro Marin Rubio, Bruno Luis de Andrade Santos |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds