Return to search

Hormonal Regulation of Neural Stem Cell Proliferation and Fate Determination

<p>Stem cells have the capacity for both self renewal, and to form all cell types in the body. Interestingly, so called neural stem cells (NSCs) are found in the adult human brain, which is of significance both out of a developmental perspective and from a clinical point of view. At the present moment, the regulation of neural stem cell (NSC) proliferation and fate determination is not completely understood.</p><p>The overall aim of this thesis was to study the mechanisms that regulate NSC proliferation and fate determination <i>in vitro</i> and <i>in vivo</i>. In particular, the roles of the female sex hormone estrogen and the testosterone analogue nandrolone, as well as the melanocortin α-melanocyte stimulating hormone (α-MSH), were analyzed in this context. Also, the breast cancer susceptibility gene one (BRCA-1), was studied in the brain with emphasis on regions containing NSCs.</p><p>Our findings show that estrogen and nandrolone have similar effects on NSCs; both decreased NSC proliferation and increased neurogenesis. Estrogen's ability to reduce proliferation was due to increased levels of p21, an inhibitor of cyclin dependent kinases. In contrast, no change in p21 was observed in the case of nandrolone, indicating differential regulation. Adult rats subjected to nandrolone injections had 30% reduced NSC proliferation in the dentate gyrus, indicating profound effects on NSCs <i>in vivo</i>.</p><p>The melanocortin α-MSH acted as a mitogen by increasing levels of cyclinD1 and retinoblastoma protein; as a result NSC proliferation was doubled.</p><p>Finally, BRCA-1 is expressed while NSCs proliferate, but is drastically down regulated upon differentiation, indicating that BRCA-1 could be used as a possible NSC marker.</p><p>In summary, in this thesis estrogen and nandrolone were identified as NSC regulators which decrease proliferation and positively influence neurogenesis. Also, we have identified the hormone α-MSH as a NSC mitogen, and BRCA-1 as a possible NSC marker.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-4694
Date January 2004
CreatorsBrännvall, Karin
PublisherUppsala University, Neurobiology, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationComprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 0282-7476 ; 1394

Page generated in 0.0017 seconds