• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 51
  • 17
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epigenetic Regulation of Lipid Metabolism in Neural Stem Cell Fate Decision

Syal, Charvi 16 January 2019 (has links)
Bioactive lipids have emerged as prominent regulators of neural stem and progenitor cell (NPC) function under both physiological and pathological conditions. However, how lipid metabolism is regulated, and its role in modulation of NPC function remains unknown. In this regard, my study defines a novel epigenetic pathway that regulates lipid metabolism to determine NPC proliferation versus differentiation. Specifically, I show that activation of an atypical protein kinase C (aPKC)-mediated Ser436 phosphorylation of CREB binding protein (CBP) by aging, metformin stimulation and continued passaging in vitro, represses expression of monoacylglycerol lipase (Mgll) to promote neuronal differentiation of adult NPCs. Mgll, a lipase that hydrolyzes the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is thus a key regulator of two critical bioactive lipid signaling pathways in the brain and a potential modulator of NPC function. I observed elevated Mgll levels, concomitant with neuronal differentiation deficits in both the lateral ventricle sub-ventricular zone (SVZ) and the hippocampal subgranular zone (SGZ) NPCs of phospho-null CBPS436A mice, that lack a functional aPKC-CBP pathway. Genetic knockdown of Mgll or inhibition of Mgll activity rescued these neuronal differentiation deficits. In addition, I found that CBPS436A SVZ NPCs exhibit enhanced proliferation at the expense of differentiation as an outcome of increased Mgll levels in culture. Interestingly, I also observed that SVZ NPCs from an Alzheimer’s disease (AD) model, the 3xTg mice, closely resemble CBPS436A NPC behaviour in culture. 3xTg NPCs exhibit attenuation of the aPKC-CBP pathway, which is associated with elevated Mgll expression and increased NPC proliferation at the expense of neuronal differentiation. Reactivation of the aPKC-CBP mediated-Mgll repression in 3xTg AD NPCs mitigates their differentiation deficits. These findings implicate Mgll as a critical switch that regulates NPC function by altering bioactive lipid signaling (2-AG versus ARA). They demonstrate that the aPKC-CBP mediated Mgll repression is essential for normal NPC function, and that when perturbed in AD, it causes impaired NPC function to generate fewer neurons, contributing to AD predisposition.
2

Neural stem cell grafts and the influence of apolipoprotein E in a mouse model of global ischaemia

Wong, Andrew M. S. January 2007 (has links)
Neural stem cell (NSC) transplantation is a promising therapy for the treatment of brain damage. Although the “proof of principle” for NSC transplantation therapy has been demonstrated in a variety of animal models of brain injury (stroke, traumatic brain injury, ageing) and in a clinical setting (Parkinson’s disease), the mechanisms by which grafted stem cells survive, migrate and differentiate in host brain are yet to be elucidated. Initial studies have demonstrated that, after transplantation of the MHP36 neural stem cell line in a focal ischaemia model, the lipid transport protein apolipoprotein E (apoE) is upregulated and co-localised to differentiated cells in parallel with functional recovery. ApoE has been shown to have a critical role in the response to brain injury and repair processes. Furthermore, in humans, three different forms of apoE exist (E2, E3, E4 encoded by the alleles e2, e3, e4) and each of these has a different ability to promote repair, with the E4 form associated with an impaired capacity. This thesis tests the hypothesis that apoE is critical in stem cell integration and investigates whether this effect is APOE genotype dependent, in a mouse model of global cerebral ischaemia. This model was chosen as it produces diffuse selective neuronal damage in the striatum and hippocampus, which also occurs in other conditions such as ageing and Alzheimer’s disease. The studies described in this thesis were designed to test the hypothesis and are outlined as follows: I. Characterisation of neural stem cell grafts in a mouse model of global ischaemia In order to investigate the potential influence of apoE on stem cell grafts, it was first essential to characterise stem cells grafts in mouse brain. Thus, the initial aim of the thesis was to characterise MHP36 grafts in a mouse model of ischaemic neuronal injury. The effect of cyclosporin A (CsA) immunosuppression was also investigated. C57Bl/6J mice underwent an episode of transient global ischaemia induced by bilateral common carotid artery occlusion. Three days following ischaemia, mice received a unilateral striatal graft of fluorescently labelled MHP36 neural stem cells or vehicle; the mice also received CsA or saline. The mice were terminated at either XVII 1 or 4 weeks post-transplantation. This study determined that MHP36 grafts survived and migrated robustly in host ischaemic brain at both 1 week and 4 weeks post-transplantation. Grafted MHP36 cells differentiated into neurons and were able to reduce the extent of ischaemic neuronal damage. An acute host inflammatory response was evoked following MHP36 grafting, but this decreased dramatically by 4 weeks post-transplantation. CsA immunosuppression did not affect MHP36 survival and migration or reduce the host inflammatory response. The successful transplantation and characterisation of MHP36 grafts in mouse brain allowed for future investigation into the genetic factors underlying stem cell graft integration via the use of apoE transgenic mice. II. Influence of apoE on neural stem cell grafts in a mouse model of global ischaemia The aim of this study was to investigate whether endogenous apoE influenced MHP36 survival, migration and differentiation and then to determine potential signalling pathways that may be involved. ApoE deficient mice on a C57Bl/6J background (APOE-KO) and control wildtype C57Bl/6J (WT) mice were subjected to an episode of transient global ischaemia, as in Experiment 1. Two weeks following ischaemia, all mice received unilateral striatal and hippocampal grafts of MHP36 cells. All mice received CsA immunosuppression. Mice were terminated 4 weeks post-transplantation. MHP36 survival and migration was significantly increased in WT as compared to APOE-KO mice. In addition, neuronal differentiation was significantly increased in WT as compared to APOE-KO mice. Increased astrocytic differentiation was observed in the hippocampus, but not striatum of WT as compared to APOE-KO mice. Measurement of the levels of signalling proteins associated with cell survival, extracellular signal-regulated kinase (ERKs) and c-Jun amino-terminal kinase (JNKs) and their phosphorylated forms (pERK and pJNK), indicated selective alterations in JNK with no change in ERK in APOE-KO as compared to WT mice, suggesting that JNK may underlie the apoE effects in stem cell integration. This study demonstrated that apoE strongly influences the survival, migration and differentiation of grafted MHP36 cells and provides initial evidence for the signalling pathways involved. XVIII III. Influence of APOE genotype on neural stem cell grafts in a mouse model of global ischaemia Following the demonstration that endogenous mouse apoE has a critical role in MHP36 graft survival, migration and differentiation, this study sought to investigate whether these effects are influenced by human APOE genotype. Transgenic mice expressing human APOE-e3 or e4, (on an APOE-KO background) and a control group of APOE-KO mice underwent transient global ischaemia and two weeks later MHP36 cells were transplanted unilaterally into the striatum and hippocampus. 1 week after grafting the mice were started on a series of tests for motor balance and coordination using the rotarod, and taken for histology 4 weeks post-transplantation. MHP36 graft survival was significantly improved in APOE-e3 mice compared to APOE-KO and APOE-e4 mice. However, the migration and differentiation of MHP36 cells and motor performance of grafted mice were similar in all three APOE groups, indicating a comparable fate and functional activity within a 4 week survival time. Thus the data indicate that APOE genotype may influence cell survival with minimal effect on stem cell migration and differentiation. The data presented in this thesis demonstrate that endogenous apoE strongly influences MHP36 graft survival, migration and differentiation. Although there was minimal evidence that human APOE genotype influences cell migration and differentiation, stem cell survival was markedly improved in a human APOE-e3 allelic environment, which may affect the effectiveness of stem cells in APOE-e4 individuals.
3

Novel Roles for Fragile X Protein in Neurogenesis

Callan, Matthew Aron January 2011 (has links)
Fragile X Syndrome (FXS) is the most common form of inherited mental retardation, affecting approximately 1/4000 males and 1/6000 females worldwide. FXS is caused by loss of FMR1 gene expression, resulting in the lack of the protein product, Fragile X protein (FMRP). FMRP is an RNA-binding protein thought to regulate synaptic plasticity by controlling the localization and translation of specific mRNAs in neurons. To determine whether FMRP is also required in early brain development we examined the distribution of cell cycle markers in Drosophila FMR1 (dFmr1) mutant brains compared to wild-type brains. Our results indicate that the loss of dFmr1 leads to a significant increase in the number of mitotic neuroblasts and BrdU incorporation in the brain, consistent with the notion that FMRP controls proliferation in neural stem cells. To determine the role of FMRP in neuroblast division and differentiation, we used Mosaic Analysis with a Repressible Marker (MARCM) approaches in the developing larval brain and found that single dFmr1 neuroblasts generate significantly more neurons than controls. Developmental studies suggest that FMRP also inhibits neuroblast exit from quiescence, or reactivation, in early larval brains, as indicated by misexpression of the G1 to S phase transition marker Cyclin E. We have also identified a novel role for FMRP in the glia surrounding the neuroblasts, indicating that FMRP in these cells contributes to the regulation of neuroblast reactivation via signaling from the supporting glial cells. Our results demonstrate that FMRP is required during brain development to control the exit from quiescence and proliferative capacity of neuroblasts as well as neuron production, which may provide insights into Fragile X Syndrome and other Autism-Spectrum disorders.
4

Modeling Neural Stem Cell and Glioma Biology

Bergström, Tobias January 2013 (has links)
This thesis is focused on neural stem cell (NSC) and glioma biology. I discuss how NSCs interact with extracellular matrix (ECM) proteins in the stem cell niche, and investigate the consequences of deregulated Platelet-derived growth factor (PDGF) signaling for embryonic NSCs in transgenic mice. Furthermore I present cell cultures of human glioblastoma multiforme (GBM) that models human disease, taking into account the heterogeneity of GBM. Finally, interactions between brain tumors and mast cells are studied using the glioma cultures. In paper I, the importance of NSC interactions with the ECM in the stem cell niche during development is discussed. Contacts between NSCs and the ECM in the subventricular zone (SVZ) are emerging as important regulatory mechanisms. We show that early postnatal neural stem and progenitor cells (NSPC) attach to collagen I, and that the adhesion is explained by higher expression of collagen receptor integrins compared to adult NSPC. Further, blood vessels in the SVZ express collagen I, indicating a possible functional relationship. Growth factors, e.g. PDGF, regulate NSC proliferation and differentiation. Aberrant activation of growth factor signaling pathways also plays a role in brain tumor formation. Paper II demonstrates that transgenic mice expressing PDGF-B at high levels in embryonic NSCs displayed mild neurological defects but no hyperplasia or brain tumors. This suggests that a high level of PDGF is not sufficient to induce brain tumors from NSCs without further mutations. Paper III presents a novel panel of human glioma stem cell (GSC) lines from GBM that display NSC markers in vitro and form secondary orthotopic tumors in vivo. GBM has recently been categorized in molecular subclasses and we demonstrate, for the first time, that these subclasses can be retained in vitro by stem cell culture conditions. We have thus generated models for research and drug development aiming at a focused treatment depending on GBM subtype. Interactions with the immune system are integral parts of tumorigenesis. Mast cells are found in glioma and in paper IV we demonstrate that the grade-dependent infiltration of mast cells is in part mediated by macrophage migration inhibitory factor and phosphorylation of STAT5.
5

Novel Regulators of Brain Tumor Development : – From neural stem cell differentiation to in vivo models

Xiong, Anqi January 2015 (has links)
Malignant brain tumors are diseases with poor prognosis and/or severe long-term side effects of treatment. This thesis aimed to discover novel regulators in brain tumor development, based on studying neural stem cell and progenitor cell (NSPC) differentiation and using animal models to introduce new insights to mechanisms of human brain tumors. The enzyme heparanase (HPSE) that degrades heparan sulfate (HS) is active in cell signaling and ECM remodeling. In paper I, we found an enhanced differentiation to oligodendrocytes in ES cell-derived NSPCs overexpressing HPSE. Further analysis suggested that this enhanced formation of oligodendrocytes was associated with alterations in receptor tyrosine kinase signaling, and that HPSE might also exert anti-apoptotic functions. Subsequently, in paper II we studied the involvement of HPSE in glioma development. We observed that high HPSE levels associated with poor survival in glioma patients. In experimental models, we found that HPSE promoted glioma growth, and that an inhibitor of HPSE reduced glioma progression both in vitro and in vivo. We hypothesize that regulators in NSPC differentiation could have a potential role in brain tumor development. In paper III, we explored the function of NRBP2, a pseudokinase that is up-regulated during NSPC differentiation. We found low expression of NRBP2 in brain tumors, in comparison to normal brain. In medulloblastoma, in particular, low NRBP2 expression is linked to poor prognosis. Overexpression of NRBP2 in medulloblastoma cells led to impaired cell growth and migration, concomitant with an increased cell death. In paper IV, we searched for novel glioma susceptibility genes by sequencing dog breeds from the same ancestor but with different glioma incidence. In this way we identified three new glioma-associated genes. Two of these are significantly regulated in human glioma and one of those might have a role in glioblastoma stem cell differentiation.
6

The Dissection of Signaling Cascades in Neural Stem Cell Proliferation & GBM Promotion

January 2014 (has links)
abstract: Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation. / Dissertation/Thesis / Ph.D. Neuroscience 2014
7

The Role of Activating E2Fs in Neural Stem Cell Maintenance from Development to Adulthood

Gemae, Raghda January 2016 (has links)
The recent discovery of adult neural precursor cells (NPCs) in the dentate gyrus and the subventricular zone of the lateral ventricles of most mammals holds much hope for the potential regeneration of damaged brain tissue. However, their use has been limited by their low numbers and relatively quiescent state, particularly in the aging brain. Previous studies from our laboratory have demonstrated a crucial role for the Rb/E2F pathway in the regulation and proliferation of NPCs, and the direct mechanistic involvement of E2F3 in regulating the pluripotency factor, Sox2. More recently, our investigations into the roles of E2F1 and E2F3 in during adult neurogenesis have revealed that loss of both these genes results in a dramatic loss of adult NPCs. Here, we have employed the Emx1-Cre and Nestin-CreERT2 transgenic models, to specifically delete E2F1 and E2F3 in the cerebral cortex and in NPCs in order to investigate the role of both these genes in embryonic neurogenesis. Our results suggest a switch in the requirement for both E2Fs 1 and 3 between embryonic and adult NPCs, demonstrated by a decrease in NPC proliferation and numbers starting only during late embryonic development and persisting through postnatal neurogenesis. These findings suggest that E2Fs 1 and 3 are essential for the maintenance of stem cells and neurogenesis in the adult brain. Moreover, their deletion results in defects in learning and memory. These studies reveal a crucial role for activating E2Fs in the long-term maintenance and proliferation of neural stem cells.
8

Neural Repair by Enhancing Endogenous Hippocampal Neurogenesis Following Traumatic Brain Injury

Wang, Xiaoting 10 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traumatic brain injury (TBI) is a critical public health issue in the United States, affecting about 2.8 million people annually. Extensive cell death and neural degeneration directly and diffusively caused by the initial mechanical insult results in a wide range of neurological complications post-trauma. Learning and memory dysfunction is one of the most common complains. Hippocampal neuronal loss, together with other mechanisms, largely contributes to learning and memory impairment as well as other cognitive dysfunctions post-trauma. To date, no FDA-approved drug is available to target cell death or improve learning and memory following TBI. It is of great interest to develop alternative approaches targeting neural repair instead. Neural stem/progenitor cells (NSCs) in the adult hippocampus undergo life-long neurogenesis supporting learning and memory functions, thus hold great promise for post-traumatic neuronal replacement. The previous studies demonstrated that TBI transiently increase NSC proliferation. However, it is debated on whether TBI affects neurogenesis. The mechanism of TBI-enhanced NSC proliferation remains elusive. In the current studies, I have investigated post-traumatic neurogenesis after different injury severities, evaluated integration of post-injury born neurons, illustrated a molecular mechanism mediating TBI-enhanced NSC proliferation, proposed a de novo state of NSCs, and tested effects of a pharmacological approach on spatial learning and memory function recovery. My results demonstrated that post-traumatic neurogenesis is affected by injury severities, partially explained the pre-existing inconsistency among works from different groups. Post-injury born neurons integrate in neural network and receive local and distal inputs. TBI promotes functional recruitment of post-injury born neurons into neural circuits. Mechanistically, mechanistic target of rapamycin (mTOR) pathway is required primarily for TBI-enhanced NSC proliferation; NSCs feature a de novo alert state, in which NSCs are reversibly released from quiescence and primed for proliferation. Furthermore, my data demonstrated a beneficial role of ketamine in improving post-traumatic spatial learning possibly by activating mTOR signal in NSCs and/or promoting neuronal activity of post-injury born neurons. Together, my data support the feasibility of neurogenesis mediated neuronal replacement, provide a target for enhancing post-traumatic NSC proliferation and subsequent neurogenesis, and prove a potential pharmacological approach benefiting post-traumatic functional recovery in learning and memory. / 2021-11-04
9

The Role of Activator E2fs In Adult Neural Stem Cell Quiescence and Activation

O'Neil, Daniel 11 October 2022 (has links)
Within the adult mammalian brain, Neural Stem Cell (NSC)s are maintained in distinct neurogenic niches in a mostly quiescent state. Activation of quiescent NSCs first requires re-entry into the cell cycle in order for the pool to proliferate and eventually commit to a neural fate, giving rise to newborn neurons. The canonical Retinoblastoma (Rb)-E2 Promoter Binding Factor (E2f) pathway is not only key in overcoming the Gap 1 Phase (G1)/S-phase restriction, but novelly appears to be involved in adult neurogenesis and NSC activation. I hypothesized that activator transcription factors E2 Promoter Binding Factor 1 (E2f1) and E2 Promoter Binding Factor 3 (E2f3) are crucial for exit from a quiescent state in adult NSCs. The contribution of the activator E2fs in this transition was studied using a Nestin-driven Cre Recombinase-Estrogen Receptor Tamoxifen-2 Ligand Binding Domain (Cre-ERT2) system to induce targeted deletion of E2f1/3 within NSCs in adult mice. We show that loss of E2f1/3 causes significant neurogenic defects, including pro-neural activation and decreased pools of adult NSCs, that preferentially adopt a quiescent profile in the subventricular zone. We employed this model to further isolate subventricular zone-derived NSCs using a Rosa26:Yellow Fluorescent Protein (YFP) reporter and subsequently analysed transcriptional profiles by RNA sequencing. Loss of E2f1/3 shifts NSC transcriptomes towards one overlapping with quiescent neural stem cell signatures (Codega et al., 2014; Basak et al., 2018), further highlighting the requirement of these E2fs for initial activation. A significant portion of these differentially expressed genes are putative E2f targets. Transcriptionally, major pathways involving cell metabolism, cellular signaling, and neural development are perturbed without activator E2f expression. In effect, this combined approach based on in vivo data and bioinformatics analyses offers a method of prospective identification of novel regulators of adult neurogenesis that require the activator E2fs. Preliminary data suggests that AT-Hook Transcription Factor (Akna) is one such target worth pursuing. Cumulatively, this project describes a unique role for E2f1 and E2f3 during NSC exit from quiescence and subsequent activation towards differentiation. As ongoing maintenance of quiescent NSCs is a necessary prerequisite for lifelong neurogenesis, conclusions from this study could determine the therapeutic potential of targeting activator E2fs to combat the niche exhaustion associated with aging, injury, and neurodegenerative diseases.
10

Aberrant hippocampal neurogenesis contributes to learning and memory deficits in a mouse model of repetitive mild traumatic brain injury

Greer, Kisha 02 October 2019 (has links)
Adult hippocampal neurogenesis, or the process of creating new neurons in the dentate gyrus (DG) of the hippocampus, underlies learning and memory capacity. This cognitive ability is essential for humans to operate in their everyday lives, but cognitive disruption can occur in response to traumatic insult such as brain injury. Previous findings in rodent models have characterized the effect of moderate traumatic brain injury (TBI) on neurogenesis and found learning and memory shortfalls correlated with limited neurogenic capacity. While there are no substantial changes after one mild TBI, research has yet to determine if neurogenesis contributes to the worsened cognitive outcomes of repetitive mild TBI. Here, we examined the effect of neurogenesis on cognitive decline following repetitive mild TBI by utilizing AraC to limit the neurogenic capacity of the DG. Utilizing a BrdU fate-labeling strategy, we found a significant increase in the number of immature neurons that correlate learning and memory impairment. These changes were attenuated in AraC-treated animals. We further identified endothelial cell (EC)-specific EphA4 receptor as a key mediator of aberrant neurogenesis. Taken together, we conclude that increased aberrant neurogenesis contributes to learning and memory deficits after repetitive mild TBI. / Doctor of Philosophy / In the United States, millions of people experience mild traumatic brain injuries, or concussions, every year. Patients often have a lower ability to learn and recall new information, and those who go on to receive more concussions are at an increased risk of developing long-term memory-associated disorders such as dementia and chronic traumatic encephalopathy. Despite the high number of athletes and military personnel at risk for these disorders, the underlying cause of long-term learning and memory shortfalls associated with multiple concussions remains ill defined. In the brain, the hippocampus play an important role in learning and memory and is one of only two regions in the brain where new neurons are created from neural stem cells through the process of neurogenesis. Our study seeks to address the role of neurogenesis in learning and memory deficits in mice. These findings provide the foundation for future, long-term mechanistic experiments that uncover the aberrant or uncontrolled processes that derail neurogenesis after multiple concussions. In short, we found an increase in the number of newborn immature neurons that we classify as aberrant neurogenesis. Suppressing this process rescued the learning and memory problems in a rodent model of repeated concussion. These findings improve our understanding of the processes that contribute to the pathophysiology of TBI.

Page generated in 0.1018 seconds