La simulation de structures industrielles complexes comportant des détails structuraux conduit à des modèles éléments finis de très grande taille. Pour traiter ce type de problème, une méthode de décomposition de domaine FETI-DP est adoptée dans ce travail. L'étude concerne un navire à passagers, dont l'architecture présente un découpage naturel en sousstructures. Les performances de ces méthodes sont très dépendantes de celles de son solveur, basé sur une méthode itérative de type gradient conjugué. Il faut donc disposer de préconditionneurs efficaces, ce qui est délicat pour des structures hétérogènes constituées par des assemblages tridimensionnels de plaques et de raidisseurs. Une méthode est donc développée tenant compte de la raideur locale d'interface des sous domaines, pour accélérer la vitesse de convergence. Dans une deuxième partie, l'objectif est d'optimiser le temps de calcul de la structure. La méthode précédente est alors améliorée avec une version multiéchelle, et deux niveaux de discrétisation des sous domaines. Les zones d'intérêt sont représentées par des sous domaines maillés finement, alors que toutes les autres sont décrites de façon macroscopique avec seulement les nœuds grossiers de l'approche FETI-DP. L'utilisation de sous domaines macroscopiques soulève le problème de la détermination de leur raideur (par homogénéisation numérique), et de leur raccord avec les sous domaines microscopiques. Deux approches différentes sont proposées, de type collocation et Mortar. Elles sont validées sur des cas simples et illustrés à travers différents exemples.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00509707 |
Date | 01 February 2008 |
Creators | Mobasher Amini, Ahmad |
Publisher | Ecole centrale de nantes - ECN |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds