Spelling suggestions: "subject:"2structures hétérogène"" "subject:"restructures hétérogène""
1 |
Analyse multi-échelle de structures hétérogènes par décomposition de domaine : application aux navires à passagersMobasher Amini, Ahmad 01 February 2008 (has links) (PDF)
La simulation de structures industrielles complexes comportant des détails structuraux conduit à des modèles éléments finis de très grande taille. Pour traiter ce type de problème, une méthode de décomposition de domaine FETI-DP est adoptée dans ce travail. L'étude concerne un navire à passagers, dont l'architecture présente un découpage naturel en sousstructures. Les performances de ces méthodes sont très dépendantes de celles de son solveur, basé sur une méthode itérative de type gradient conjugué. Il faut donc disposer de préconditionneurs efficaces, ce qui est délicat pour des structures hétérogènes constituées par des assemblages tridimensionnels de plaques et de raidisseurs. Une méthode est donc développée tenant compte de la raideur locale d'interface des sous domaines, pour accélérer la vitesse de convergence. Dans une deuxième partie, l'objectif est d'optimiser le temps de calcul de la structure. La méthode précédente est alors améliorée avec une version multiéchelle, et deux niveaux de discrétisation des sous domaines. Les zones d'intérêt sont représentées par des sous domaines maillés finement, alors que toutes les autres sont décrites de façon macroscopique avec seulement les nœuds grossiers de l'approche FETI-DP. L'utilisation de sous domaines macroscopiques soulève le problème de la détermination de leur raideur (par homogénéisation numérique), et de leur raccord avec les sous domaines microscopiques. Deux approches différentes sont proposées, de type collocation et Mortar. Elles sont validées sur des cas simples et illustrés à travers différents exemples.
|
2 |
Prise en compte des hétérogénéités structurales en modélisation et calcul des vibrations moyennes fréquences par la théorie variationnelle des rayons complexesBlanc, Laurent 17 March 2005 (has links) (PDF)
Cette thèse s'appuie sur une méthode multi-échelle dédiée à la modélisation et au calcul des vibrations moyennes fréquences : la "Théorie Variationnelle des Rayons Complexes", qui suppose initialement que la structure étudiée soit un assemblage de sous structures homogènes. Elle a déjà été validée dans le cas des assemblages de plaques et de coques tridimensionnels. Cependant, la plupart des structures industrielles présentent des inhomogénéités structurales comme des trous de passage de câbles, qui modifient sensiblement la réponse vibratoire en moyennes fréquences. L'objet de la thèse est de permettre leur prise en compte. La démarche proposée consiste enrichir l'espace des fonctions de base qu'exploite la méthode par des fonctions de correction adaptées à l'inhomogénéité.
|
3 |
Analyse statistique de populations pour l'interprétation d'images histologiques / Statistical analysis of populations for histological images interpretationAlsheh Ali, Maya 19 February 2015 (has links)
Au cours de la dernière décennie, la pathologie numérique a été améliorée grâce aux avancées des algorithmes d'analyse d'images et de la puissance de calcul. Néanmoins, le diagnostic par un expert à partir d'images histopathologiques reste le gold standard pour un nombre considérable de maladies notamment le cancer. Ce type d'images préserve la structure des tissus aussi proches que possible de leur état vivant. Ainsi, cela permet de quantifier les objets biologiques et de décrire leur organisation spatiale afin de fournir une description plus précise des tissus malades. L'analyse automatique des images histopathologiques peut avoir trois objectifs: le diagnostic assisté par ordinateur, l'évaluation de la sévérité des maladies et enfin l'étude et l'interprétation des mécanismes sous-jacents des maladies et leurs impacts sur les objets biologiques. L'objectif principal de cette thèse est en premier lieu de comprendre et relever les défis associés à l'analyse automatisée des images histologiques. Ensuite, ces travaux visent à décrire les populations d'objets biologiques présents dans les images et leurs relations et interactions à l'aide des statistiques spatiales et également à évaluer la significativité de leurs différences en fonction de la maladie par des tests statistiques. Après une étape de séparation des populations d'objets biologiques basée sur la couleur des marqueurs, une extraction automatique de leurs emplacements est effectuée en fonction de leur type, qui peut être ponctuel ou surfacique. Les statistiques spatiales, basées sur la distance pour les données ponctuelles, sont étudiées et une fonction originale afin de mesurer les interactions entre deux types de données est proposée. Puisqu'il a été montré dans la littérature que la texture d'un tissu est altérée par la présence d'une maladie, les méthodes fondées sur les motifs binaires locaux sont discutées et une approche basée sur une modification de la résolution de l'image afin d'améliorer leur description est introduite. Enfin, les statistiques descriptives et déductives sont appliquées afin d'interpréter les caractéristiques extraites et d'étudier leur pouvoir discriminant dans le cadre de l'étude des modèles animaux de cancer colorectal. Ce travail préconise la mesure des associations entre différents types d'objets biologiques pour mieux comprendre et comparer les mécanismes sous-jacents des maladies et leurs impacts sur la structure des tissus. En outre, nos expériences confirment que l'information de texture joue un rôle important dans la différenciation des deux modèles d'implantation d'une même maladie. / During the last decade, digital pathology has been improved thanks to the advance of image analysis algorithms and calculus power. However, the diagnosis from histopathology images by an expert remains the gold standard in a considerable number of diseases especially cancer. This type of images preserves the tissue structures as close as possible to their living state. Thus, it allows to quantify the biological objects and to describe their spatial organization in order to provide a more specific characterization of diseased tissues. The automated analysis of histopathological images can have three objectives: computer-aided diagnosis, disease grading, and the study and interpretation of the underlying disease mechanisms and their impact on biological objects. The main goal of this dissertation is first to understand and address the challenges associated with the automated analysis of histology images. Then it aims at describing the populations of biological objects present in histology images and their relationships using spatial statistics and also at assessing the significance of their differences according to the disease through statistical tests. After a color-based separation of the biological object populations, an automated extraction of their locations is performed according to their types, which can be point or areal data. Distance-based spatial statistics for point data are reviewed and an original function to measure the interactions between point and areal data is proposed. Since it has been shown that the tissue texture is altered by the presence of a disease, local binary patterns methods are discussed and an approach based on a modification of the image resolution to enhance their description is introduced. Finally, descriptive and inferential statistics are applied in order to interpret the extracted features and to study their discriminative power in the application context of animal models of colorectal cancer. This work advocates the measure of associations between different types of biological objects to better understand and compare the underlying mechanisms of diseases and their impact on the tissue structure. Besides, our experiments confirm that the texture information plays an important part in the differentiation of two implemented models of the same disease.
|
4 |
Analyse statistique de populations pour l'interprétation d'images histologiques / Statistical analysis of populations for histological images interpretationAlsheh Ali, Maya 19 February 2015 (has links)
Au cours de la dernière décennie, la pathologie numérique a été améliorée grâce aux avancées des algorithmes d'analyse d'images et de la puissance de calcul. Néanmoins, le diagnostic par un expert à partir d'images histopathologiques reste le gold standard pour un nombre considérable de maladies notamment le cancer. Ce type d'images préserve la structure des tissus aussi proches que possible de leur état vivant. Ainsi, cela permet de quantifier les objets biologiques et de décrire leur organisation spatiale afin de fournir une description plus précise des tissus malades. L'analyse automatique des images histopathologiques peut avoir trois objectifs: le diagnostic assisté par ordinateur, l'évaluation de la sévérité des maladies et enfin l'étude et l'interprétation des mécanismes sous-jacents des maladies et leurs impacts sur les objets biologiques. L'objectif principal de cette thèse est en premier lieu de comprendre et relever les défis associés à l'analyse automatisée des images histologiques. Ensuite, ces travaux visent à décrire les populations d'objets biologiques présents dans les images et leurs relations et interactions à l'aide des statistiques spatiales et également à évaluer la significativité de leurs différences en fonction de la maladie par des tests statistiques. Après une étape de séparation des populations d'objets biologiques basée sur la couleur des marqueurs, une extraction automatique de leurs emplacements est effectuée en fonction de leur type, qui peut être ponctuel ou surfacique. Les statistiques spatiales, basées sur la distance pour les données ponctuelles, sont étudiées et une fonction originale afin de mesurer les interactions entre deux types de données est proposée. Puisqu'il a été montré dans la littérature que la texture d'un tissu est altérée par la présence d'une maladie, les méthodes fondées sur les motifs binaires locaux sont discutées et une approche basée sur une modification de la résolution de l'image afin d'améliorer leur description est introduite. Enfin, les statistiques descriptives et déductives sont appliquées afin d'interpréter les caractéristiques extraites et d'étudier leur pouvoir discriminant dans le cadre de l'étude des modèles animaux de cancer colorectal. Ce travail préconise la mesure des associations entre différents types d'objets biologiques pour mieux comprendre et comparer les mécanismes sous-jacents des maladies et leurs impacts sur la structure des tissus. En outre, nos expériences confirment que l'information de texture joue un rôle important dans la différenciation des deux modèles d'implantation d'une même maladie. / During the last decade, digital pathology has been improved thanks to the advance of image analysis algorithms and calculus power. However, the diagnosis from histopathology images by an expert remains the gold standard in a considerable number of diseases especially cancer. This type of images preserves the tissue structures as close as possible to their living state. Thus, it allows to quantify the biological objects and to describe their spatial organization in order to provide a more specific characterization of diseased tissues. The automated analysis of histopathological images can have three objectives: computer-aided diagnosis, disease grading, and the study and interpretation of the underlying disease mechanisms and their impact on biological objects. The main goal of this dissertation is first to understand and address the challenges associated with the automated analysis of histology images. Then it aims at describing the populations of biological objects present in histology images and their relationships using spatial statistics and also at assessing the significance of their differences according to the disease through statistical tests. After a color-based separation of the biological object populations, an automated extraction of their locations is performed according to their types, which can be point or areal data. Distance-based spatial statistics for point data are reviewed and an original function to measure the interactions between point and areal data is proposed. Since it has been shown that the tissue texture is altered by the presence of a disease, local binary patterns methods are discussed and an approach based on a modification of the image resolution to enhance their description is introduced. Finally, descriptive and inferential statistics are applied in order to interpret the extracted features and to study their discriminative power in the application context of animal models of colorectal cancer. This work advocates the measure of associations between different types of biological objects to better understand and compare the underlying mechanisms of diseases and their impact on the tissue structure. Besides, our experiments confirm that the texture information plays an important part in the differentiation of two implemented models of the same disease.
|
5 |
Dynamic behaviour of electric machine stators : modelling guidelines for efficient finite-element simulations and design specifications for noise reduction / Comportement dynamique de stators de machines électriques : règles de modélisation pour simulations par éléments finis et optimisation des propriétés pour une réduction du bruit en fonctionnementMillithaler, Pierre 09 October 2015 (has links)
Dopées par un intérêt croissant des industries telles que l’automobile, les technologies demotorisation100% électriques équipent de plus en plus de véhicules à la portée du grand public. Endépit d’une opinion commune favorable sur les faibles émissions sonores des moteurs électriques,la maîtrise des performances vibratoires et acoustiques d’une telle machine reste un challenge trèscoûteux à relever. Associant l’expertise de l’entreprise Vibrate cet du département MécaniqueAppliquée de l’institut Femto-ST, cette thèse CIFRE vise à améliorer les connaissances actuellessur le comportement mécanique de machines électriques. De nouvelles méthodes de modélisationpar éléments finis sont proposées à partir d’approches d’homogénéisation,analyses expérimentales,recalage de modèles et études de variabilité en température et en fréquence,pour permettre uneprédiction plus performante du comportement vibratoire d’un moteur électrique / Boosted by the increasing interest of industries such as automotive,100% electric engine technologies power more and more affordable vehicles for the general public.Inspite of a rather favourable common opinion about the low noisee mitted by electric motors, controlling the vibratory and acoustic performances of such machines remains a very costly challenge to take up. Associating the expertise of the company Vibratec and the institute Femto-ST Applied Mechanics Department, this industry-orientedPh.D.thesisaimsatimprovingthecurrentknowledgeaboutthe mechanicalbehaviour ofelectric machines. New finite-element modelling method sare proposedf rom homogenisation approaches,experimental analyses, model up dating procedures and variability studies in temperature and frequency, in order to predict the behaviour of an electric motor more efficiently
|
6 |
Analyse statistique de populations pour l'interprétation d'images histologiques / Statistical analysis of populations for histological images interpretationAlsheh Ali, Maya 19 February 2015 (has links)
Au cours de la dernière décennie, la pathologie numérique a été améliorée grâce aux avancées des algorithmes d'analyse d'images et de la puissance de calcul. Néanmoins, le diagnostic par un expert à partir d'images histopathologiques reste le gold standard pour un nombre considérable de maladies notamment le cancer. Ce type d'images préserve la structure des tissus aussi proches que possible de leur état vivant. Ainsi, cela permet de quantifier les objets biologiques et de décrire leur organisation spatiale afin de fournir une description plus précise des tissus malades. L'analyse automatique des images histopathologiques peut avoir trois objectifs: le diagnostic assisté par ordinateur, l'évaluation de la sévérité des maladies et enfin l'étude et l'interprétation des mécanismes sous-jacents des maladies et leurs impacts sur les objets biologiques. L'objectif principal de cette thèse est en premier lieu de comprendre et relever les défis associés à l'analyse automatisée des images histologiques. Ensuite, ces travaux visent à décrire les populations d'objets biologiques présents dans les images et leurs relations et interactions à l'aide des statistiques spatiales et également à évaluer la significativité de leurs différences en fonction de la maladie par des tests statistiques. Après une étape de séparation des populations d'objets biologiques basée sur la couleur des marqueurs, une extraction automatique de leurs emplacements est effectuée en fonction de leur type, qui peut être ponctuel ou surfacique. Les statistiques spatiales, basées sur la distance pour les données ponctuelles, sont étudiées et une fonction originale afin de mesurer les interactions entre deux types de données est proposée. Puisqu'il a été montré dans la littérature que la texture d'un tissu est altérée par la présence d'une maladie, les méthodes fondées sur les motifs binaires locaux sont discutées et une approche basée sur une modification de la résolution de l'image afin d'améliorer leur description est introduite. Enfin, les statistiques descriptives et déductives sont appliquées afin d'interpréter les caractéristiques extraites et d'étudier leur pouvoir discriminant dans le cadre de l'étude des modèles animaux de cancer colorectal. Ce travail préconise la mesure des associations entre différents types d'objets biologiques pour mieux comprendre et comparer les mécanismes sous-jacents des maladies et leurs impacts sur la structure des tissus. En outre, nos expériences confirment que l'information de texture joue un rôle important dans la différenciation des deux modèles d'implantation d'une même maladie. / During the last decade, digital pathology has been improved thanks to the advance of image analysis algorithms and calculus power. However, the diagnosis from histopathology images by an expert remains the gold standard in a considerable number of diseases especially cancer. This type of images preserves the tissue structures as close as possible to their living state. Thus, it allows to quantify the biological objects and to describe their spatial organization in order to provide a more specific characterization of diseased tissues. The automated analysis of histopathological images can have three objectives: computer-aided diagnosis, disease grading, and the study and interpretation of the underlying disease mechanisms and their impact on biological objects. The main goal of this dissertation is first to understand and address the challenges associated with the automated analysis of histology images. Then it aims at describing the populations of biological objects present in histology images and their relationships using spatial statistics and also at assessing the significance of their differences according to the disease through statistical tests. After a color-based separation of the biological object populations, an automated extraction of their locations is performed according to their types, which can be point or areal data. Distance-based spatial statistics for point data are reviewed and an original function to measure the interactions between point and areal data is proposed. Since it has been shown that the tissue texture is altered by the presence of a disease, local binary patterns methods are discussed and an approach based on a modification of the image resolution to enhance their description is introduced. Finally, descriptive and inferential statistics are applied in order to interpret the extracted features and to study their discriminative power in the application context of animal models of colorectal cancer. This work advocates the measure of associations between different types of biological objects to better understand and compare the underlying mechanisms of diseases and their impact on the tissue structure. Besides, our experiments confirm that the texture information plays an important part in the differentiation of two implemented models of the same disease.
|
Page generated in 0.0485 seconds