• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prise en compte des hétérogénéités structurales en modélisation et calcul des vibrations moyennes fréquences par la théorie variationnelle des rayons complexes

Blanc, Laurent 17 March 2005 (has links) (PDF)
Cette thèse s'appuie sur une méthode multi-échelle dédiée à la modélisation et au calcul des vibrations moyennes fréquences : la "Théorie Variationnelle des Rayons Complexes", qui suppose initialement que la structure étudiée soit un assemblage de sous structures homogènes. Elle a déjà été validée dans le cas des assemblages de plaques et de coques tridimensionnels. Cependant, la plupart des structures industrielles présentent des inhomogénéités structurales comme des trous de passage de câbles, qui modifient sensiblement la réponse vibratoire en moyennes fréquences. L'objet de la thèse est de permettre leur prise en compte. La démarche proposée consiste enrichir l'espace des fonctions de base qu'exploite la méthode par des fonctions de correction adaptées à l'inhomogénéité.
2

La théorie variationnelle des rayons complexes version Fourier : application aux problèmes tridimensionnels de vibro-acoustique

Kovalevsky, Louis 09 June 2011 (has links) (PDF)
La Théorie Variationnelle des Rayons Complexes (TVRC) est une méthode ondulatoire adaptée à la résolution de problèmes de vibrations dans le domaine des moyennes fréquences. Elle utilise une formulation faible du problème qui permet d'utiliser n'importe quelles fonctions de forme qui vérifient l'équation d'équilibre à l'intérieur du sous domaine. Ainsi la solution peut être approximée par une répartition intégrale d'ondes planes, cette approche est particulièrement efficace en moyenne fréquence et conduit a un très bon taux de convergence de la méthode. Dans les travaux précédents, l'amplitude des ondes planes était discrétisée par une fonction constante par morceaux. Dans cette thèse, une nouvelle forme de discrétisation est proposée, basée sur les séries de Fourier. L'extension aux problèmes tridimensionnels est directe grâce à l'utilisation des harmoniques sphériques. Cette nouvelle approche permet d'améliorer l'efficacité et la robustesse de la méthode grâce notamment à un schéma d'intégration semi-analytique. Cette nouvelle version de la TVRC est alors capable de traiter des problèmes d'une complexité industrielle, et de résoudre des problèmes à des fréquences relativement élevées.
3

La théorie variationnelle des rayons complexes version Fourier : application aux problèmes tridimensionnels de vibro-acoustique / The variational theory of complex rays Fourier version : application to 3D coupled vibro-acoustics

Kovalevsky, Louis 09 June 2011 (has links)
La Théorie Variationnelle des Rayons Complexes (TVRC) est une méthode ondulatoire adaptée à la résolution de problèmes de vibrations dans le domaine des moyennes fréquences. Elle utilise une formulation faible du problème qui permet d'utiliser n'importe quelles fonctions de forme qui vérifient l'équation d'équilibre à l'intérieur du sous domaine. Ainsi la solution peut être approximée par une répartition intégrale d'ondes planes, cette approche est particulièrement efficace en moyenne fréquence et conduit a un très bon taux de convergence de la méthode. Dans les travaux précédents, l'amplitude des ondes planes était discrétisée par une fonction constante par morceaux. Dans cette thèse, une nouvelle forme de discrétisation est proposée, basée sur les séries de Fourier. L'extension aux problèmes tridimensionnels est directe grâce à l'utilisation des harmoniques sphériques. Cette nouvelle approche permet d'améliorer l'efficacité et la robustesse de la méthode grâce notamment à un schéma d'intégration semi-analytique. Cette nouvelle version de la TVRC est alors capable de traiter des problèmes d'une complexité industrielle, et de résoudre des problèmes à des fréquences relativement élevées. / The Variational Theory of Complex Rays (VTCR) is a wave-based computational approach dedicated to the resolution of medium-frequency problems. It uses a variational formulation of the problem which enables one to use any type of shape function within the substructures provided that it verifies the governing equation. Thus, the solution can be approximated using plane waves, which is very interesting in the medium-frequency vibration domain and also leads to a strong convergence of the method. In the previous works, this was shown in the case of acoustic problems in which the amplitudes of the plane waves were calculated as wavebands. In this thesis, we propose a new approximation of these amplitudes based on Fourier series. The extension to 3D problems is straightforward thanks to the use of spherical harmonics. We show that this approach increases the robustness of the method as it handles problems of industrial complexity, makes it more efficient numerically thanks to analytical integration and extends its applicability to somewhat higher frequencies.
4

Modelling the vibrational response and acoustic radiation of the railway tracks / Modélisation de la réponse vibratoire et du rayonnement acoustique de la voie ferrée

Cettour-Janet, Raphael 12 September 2019 (has links)
Dans un contexte de densification des villes et de leurs réseaux de transport, les gens sont de plus en plus exposés au bruit. Ainsi, le résultat de l'étude d'impact vibro-acoustique joue un rôle primordial dans l'expansion du réseau ferroviaire. L'une des principales sources est le bruit de roulement : La rugosité de la surface de la roue et du rail produit un déplacement imposé sur ces derniers. Ce déplacement entraine une réponse vibratoire des roues et de la voie ferrée et leurs rayonnements acoustiques. Cette thèse propose une amélioration de la modélisation vibro-acoustique de la voie ferrée.Pour la réponse vibratoire, le coté infini de la voie et sa déformation dans les 3 dimensions rendent les modèles analytiques et les éléments finis non-optimales dans la gamme de fréquence de l’audible. La méthode élément fini semi-périodique (SAFEM) est utilisée dans cette thèse pour modéliser une voie à support continue. Elle est ensuite couplée au théorème de Floquet pour modéliser une voie à support périodique. Cependant, cette technique génère des problèmes numériques qui ont imposé un algorithme adapté. La méthode d'Arnoldi du second ordre (SOAR) est utilisée avant de résoudre l'équation SAFEM permet de résoudre ces problèmes ainsi qu’apporter la stabilité requise. Des comparaisons avec d’autres modèles et des données expérimentales permettent de valider la méthode.Pour le rayonnement acoustique, la simulation de grand domaine en haute fréquence rendent inadapté l'utilisation de techniques conventionnelles (FEM, BEM, ...). La méthode proposée ici : la théorie variationnelle du rayon complexe est particulièrement bien adaptée à ce cas. Les principales caractéristiques de l'approche VTCR sont l'utilisation d'une formulation faible du problème acoustique, qui permet de considérer automatiquement les conditions limites entre sous-domaines. Ensuite, l'utilisation d'une répartition intégrale des ondes planes dans toutes les directions permet de simuler le champ acoustique. Les inconnues du problème sont leurs amplitudes. Cette méthode qui a déjà montré son efficacité pour les domaines fermés a été étendue au domaine ouvert et couplée à la réponse vibratoire. Des comparaisons avec des solutions analytiques et des simulations FEM à basse fréquence permettent de valider la méthode. / In a context of urban and transport network densification, people are increasingly exposed to noise. Consequently, the result of vibro-acoustic impact assessment has a pivotal role in rail network expansion. One of the main sources is the rolling noise: Roughness on the wheel and rail surface produce an imposed displacement one the both. This last, generates vibrational response of wheels and the railway track and their acoustic radiation. This PhD thesis presents some improvements of the vibro-acoustic railway track modelling.Concerning vibrational response, the infinite dimension in the longitudinal direction of the track and its deformation in the 3 dimensions, make the analytical models and finite elements non-optimal. The Semi-analytical finite element method (SAFEM), used in this thesis, is particularly well adapted in this case. Firstly, it is used to model railway track on a continuous support. Then, it is coupled with Floquet theorem to model tracks with a periodic support. However, this technique suffers from numerical problems that imposed an adapted algorithm. The second-order Arnoldi method (SOAR) is used to tackle them. This reduction allows to eliminate critical values improving the robustness of the method. Comparison with existing techniques and experimental results validate this model.Concerning acoustic radiation, big domains simulations at high frequency are almost unfeasible when using conventional techniques (FEM, BEM,…). The method used in this thesis, the Variational theory of complex ray (VTCR) is particularly well adapted to these cases. The principal features of VTCR approach are the use of a weak formulation of the acoustic problem, which allows to consider automatically boundary conditions between sub-domains. Then, the use of an integral repartition of plane waves in all the direction allow to simulate the acoustic field. The unknowns of the problem are their amplitudes. This method well assessed for closed domain, has been extended to open domain and coupled to vibrational response of the rail. Comparison with analytic solution and FEM simulation at low frequency allow to validate the method.Coupling these both methods allowed to simulate complex real life vibro-acoustic scenarios. Result of different railway tracks are presented and validated

Page generated in 0.0434 seconds