Ce travail est dédié à l'étude d'écoulement diphasique sous pression en micro et milli-capillaires pour permettre la mesure efficace de propriétés de mélanges sous pression. Dans un premier temps, un montage expérimental comprenant un micro-dispositif pour des applications allant jusqu'à des pressions de 25 MPa a été développé. Ce micro-dispositif à faible coût et transparent, permet la visualisation de l'écoulement grâce à une caméra rapide. Dans un second temps, l'étude du système diphasique du système CO2 supercritique / liquide ionique (1-Butyl-3-Methyl-Imidazolium hexafluorophosphate, [BMIm][PF6]) sous pression est présentée. L'écoulement est réalisé dans des tubes cylindriques de silice de diamètre intérieur de 536 micromètres. Parmi les différents régimes d'écoulements diphasiques, nous nous sommes intéressés aux écoulements périodiques intermittents ou « Taylor flow ». La zone de conditions opératoires couvertes est la suivante : [308 K - 318 K] x [9 MPa - 18 MPa]. Les films de la caméra rapide sont traités par analyse d'image. Le logiciel« μcap2phase » développé pour traiter les films permet d'accéder aux caractéristiques géométriques de l'écoulement (volume et aire de chaque phase, longueur du motif, longueur de la phase dispersée et vitesse de la phase dispersée). Un comportement atypique est observé avec ce binaire. En effet le transfert unidirectionel du CO2SC dans le [BMIm][PF6] induit des changements importants des propriétés physico-chimiques de la phase continue : abaissement de la viscosité (divisée par 10) et augmentation de la masse volumique (multiplié par 1,5). Ces changements impliquent une modification de la forme et de la taille des bulles au cours de l'écoulement. Une importante vitesse de glissement a été identifiée. Elle est générée par la présence d'un film épais de viscosité plus élevée au niveau des parois du capillaire. Un modèle de transfert de matière prenant en compte certaines des observations expérimentales (variations de la taille du film, de la taille des bulles, et des propriétés de la phase continue tout au long du capillaire) a été développé. Ce modèle intégrera dans le futur la tension interfaciale bulle/phase continue et le facteur de forme de la bulle. / The present work deals with the study of two-phase flow in micro-capillaries under high-pressure to enhance properties measurements. As a first step, an experimental setup consisting of a micro-device has been developed for microfluidics high-pressure applications (P < 25 MPa). The set-up combines good optical access, high-pressure resistance, homogeneous operating conditions, fast process control and detection, and the ability to generate a stable two-phase flow. In the following step, we focused our work on the hydrodynamics features of two-phase flow between supercritical carbon dioxide(SC-CO2) and ionic liquid (1-butyl-3-methyl-imidazolium hexafuorophosphate) ([BMIm][PF6]) .The two-phase flow system is observed with a high-speed camera. The flow is conducted in silica capillary tubing with inner diameter of 536 micrometers. Among the two-phase flow patterns, ours relates to Taylor flow. The range of operating conditions are : [308 K - 318 K] x [9 MPa - 18 MPa]. An image analysis home-made soft, « μcap2phase », has been developed in order to access to the geometric properties and to the velocities of the dispersed phase from images. The two-phase flow presents an unexpected behaviour. In fact, the unidirectional transfer of SC-CO2 in [BMIm][PF6] induces significant changes in physico-chemical properties of continous phase : viscosity decreases(divided by ten) and density increases (1.5 fold). Due to the wide variations of the continuous phase properties along the capillary, size and shape of the dispersed phase bubbles are simultaneously modified. A significant slip velocity has been indentified located between a thick liquid film (at the wall of capillary) and a Taylor flow region (at the center). A mass transfer taking into account some experimental observations (changes in film thickness, in bubble size, and in properties of the continuous phase throughout the capillary) is developed. Further, this model will integrate the interfacial tension between bubbles and continous phase.
Identifer | oai:union.ndltd.org:theses.fr/2014EMAC0003 |
Date | 28 March 2014 |
Creators | Macedo Portela da Silva, Nayane |
Contributors | Ecole nationale des Mines d'Albi-Carmaux, Espitalier, Fabienne, Letourneau, Jean-Jacques |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds