L'ARN (acide ribonucléique) est une molécule ubiquitaire qui joue plusieurs rôles fondamentaux au sein de la cellule: synthèse des protéines avec les ARN messagers, activité catalytique ou implicationdans la régulation, les ARN non-codants. Les nouvelles technologies de séquençage à haut-débit permettent de produire des milliards de séquences à moindre coût, posant de manière cruciale la question de l'analyse de ces données. L'objectif de cette thèse est de définir de nouvelles méthodes computationnelles pour aider à l'analyse de ces séquences dans le cas des ARN non-codants. Dans cette perspective, la "structure secondaire" d'un ARN, formée par l'ensemble des appariements entrebases, délivre des informations utiles pour étudier la fonction de l'ARN. Notre travail se concentre plus particulièrement sur l'ensemble des structures potentielles que peut adopter une séquence d'ARN donnée, ensemble que nous appelons "multi-structure". Nous apportons deux contributions: un algorithme pour générer systématiquement toutes les structures localement optimales composantune multi-structure, et un algorithme basé sur la recherche d'unemulti-structure pour identifier un ARN non-codant dans une séquence génomique. Ces résultats ont été mis en oeuvre dans deux logiciels, Alterna et Regliss, appliqués avec succès à des ensembles de test.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00832700 |
Date | 16 November 2011 |
Creators | Saffarian, Azadeh |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.003 seconds