Made available in DSpace on 2017-07-21T14:19:27Z (GMT). No. of bitstreams: 1
Elvis Canteri.pdf: 1285842 bytes, checksum: f2c5d9e754ae68692d585d59818e0e5f (MD5)
Previous issue date: 2015-09-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nitrogen (N) is a nutrient that is directly related to the plants development and proper nitrogen fertilization can provide harvest in less time and increase productivity. The N have been handled incorrectly and often non-satisfactory supplied to the land. Proper management depends on constant monitoring of nutritional status that can be accomplished by predicting the leaf nitrogen content. This work aims to evaluate digital image processing algorithms, in order to establish a valid method to estimate the nutritional stress of N (nitrogen) on maize, and the feasibility of its implementation on mobile devices using photos sampled in the field under natural lighting environment. It was found that the thresholding process should use the HSV factor, more suitable under natural light if the sampling in the field was conducted between 11:15 am and 14:55. Among the algorithms we highlight the results of the DGCI (Dark Green Color Index) obtained from factor HSV (Hue, Saturation, Vibration), with significant correlation to leaf analysis of corn (R² = 0.92) and the adoption of NDVI (Normalized Difference Vegetation Index) obtained from the RGB histogram (Red, Green, Blue). This is the same method studied considering the FieldScout CM 1000 and GreenSeeker chlorophyll meters used in this research. No significant correlation among the readings was found when considering values from chlorophyll meters obtained in any moment of the day or from different light conditions.
However, there is a positive correlation among the FieldScout CM 1000 and GreenSeeker, corresponding to sampling among 11h16m and 14h32m (R² = 0.75) and among 12h15m and 14h53m (R² = 0.92), as well is possible to estimate the IRC of maize based on the DGCI to V5 to V7 phenological stages directly at crop field using a mobile device. / O nitrogênio (N) é um nutriente que é diretamente relacionado ao desenvolvimento das plantas e a adubação nitrogenada adequada pode proporcionar a colheita em menor tempo e com aumento na produtividade. O N vêm sendo manejado incorretamente e frequentemente suprido de modo insatisfatório pelo solo. O manejo adequado depende do monitoramento constante do estado nutricional que pode ser realizado estimando-se o teor de N foliar. O objetivo principal deste trabalho visa qualificar a utilização de algoritmos de processamento digital de imagens, com a finalidade de estabelecer um método válido para estimar o estresse nutricional de N (nitrogênio) da cultura do milho, bem como a viabilidade de sua implementação em dispositivos móveis, utilizando fotos amostradas em ambiente de campo sob iluminação natural. Constatou-se que o processo de limiarização deve ter base no fator HSV, mais adequado sob iluminação natural se considerarmos a amostragem em ambiente de campo, compreendido entre as 11h15min e 14h55min. Dentre os algoritmos destacam-se os resultados do DGCI (Dark Green Color Index) obtido do fator HSV (Hue, Saturation, Vibration), com significativa correlação para análise foliar do milho (R²=0,92) e a adoção do NDVI (Normalized Difference Vegetation Index) obtido a partir do histograma RGB (Red, Green, Blue), sendo o mesmo método investigado com o uso dos clorofilômetros FieldScout CM 1000 e GreenSeeker, Não há correlação significativa entre as leituras efetuadas pelos clorofilômetros se forem consideradas leituras em qualquer momento do dia e sob diversas condições de luminosidade. Porém, há correlação positiva das leituras dos clorofilômetros FieldScout CM 1000 e GreenSeeker, correspondendo a amostragem entre as 11h16m e 14h32m (R²=0,75) e entre as 12h15m e 14h53m (R²=0,92), bem como torna-se possível estimar o IRC da cultura do milho com base no DGCI para o estádio fenológico V5 a V7 em ambiente de campo utilizando um dispositivo móvel.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2.uepg.br:prefix/134 |
Date | 11 September 2015 |
Creators | Andrade, Elvis Canteri de |
Contributors | Senger, Luciano José, Caires, Eduardo Fávero, Britto Junior, Alceu de Souza, Weirich Neto, Pedro Henrique |
Publisher | UNIVERSIDADE ESTADUAL DE PONTA GROSSA, Programa de Pós Graduação Computação Aplicada, UEPG, BR, Computação para Tecnologias em Agricultura |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UEPG, instname:Universidade Estadual de Ponta Grossa, instacron:UEPG |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds