Return to search

FEM-basierte Modellierung stark anisotroper Hybridcord-Elastomer-Verbunde

Zur Analyse der Beanspruchungen in textilverstärkten Elastomerbauteilen wie Luftfedern, Reifen, Riemen und Schläuchen sind Berechnungsmodelle mit einer feinen Balance zwischen Genauigkeit und Effizienz erforderlich. Die großen Deformationen, stark anisotropen Struktureigenschaften und kleinen Abmessungen der Festigkeitsträger gegenüber denen des Bauteils bedürfen einerseits einer detaillierten Modellierung, andererseits sind die kritischen Bereiche in diesen Bauteilen räumlich stark begrenzt, sodass eine Reduktion des Berechnungsaufwands erstrebenswert ist. Diese Modellreduktion führt zu Simulationen mit geringer Rechenzeit, die für eine praxistaugliche Optimierung von Hybridcord-Elastomer-Verbunden unerlässlich sind.

Die beiden Hauptschwerpunkte der vorliegenden Arbeit bilden die kontinuumsmechanische Modellierung von Hybridcorden und die Erstellung repräsentativer Volumenelemente hochbeanspruchter Hybridcord-Elastomer-Verbunde. Aufbauend auf einem anisotropen Plastizitätsmodell zur Erfassung der Reibung in Multifilamentgarnen stellt ein Finite-Elemente-Modell zur Simulation der Verzwirnung von Hybridcorden das Fundament der Arbeit dar. Anhand experimenteller Ergebnisse aus Zug- und Torsionsversuchen sowie einem Vergleich mit Querschnittsaufnahmen wird gezeigt, dass das Modell die komplexen Eigenschaften eines Hybridcords abbilden kann. Die Grundlage der repräsentativen Volumenelemente stellt eine Erweiterung der klassischen periodischen Randbedingungen dar, die eine Berücksichtigung von Krümmungen und Drucklasten ermöglicht. Das Modell eignet sich daher, die Beanspruchungen in den hochbelasteten Bereichen textilverstärkter Elastomerbauteile wie der Rollfalte einer Luftfeder effizient zu analysieren. Mittels Parameterstudien werden abschließend Hybridcorde und Hybridcord-Elastomer-Verbunde untersucht und einige Hinweise für eine optimale Gestaltung hinsichtlich minimaler Beanspruchungen des Elastomers, des Hybridcords sowie der Grenzfläche gegeben.:Inhaltsverzeichnis
Abkürzungs- und Symbolverzeichnis VIII
1 Einleitung 1
2 Grundlagen der Mathematik und der Mechanik 6
2.1 Tensoralgebra und -analysis 6
2.2 Nichtlineare Kontinuumsmechanik 11
2.3 Nichtlineare Finite-Elemente-Methode 16
3 Einordnung in den Stand der Forschung 22
4 Experimentelle Untersuchungen 26
4.1 Charakterisierung der Standardcorde 26
4.2 Charakterisierung der Hybridcorde 33
5 Materialmodelle für Multi lamentgarne 38
5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38
5.2 Numerische Lösung der Materialgleichungen 43
5.3 Analytische Lösung für reibungsfreies Gleiten 48
5.4 Modellierung des thermischen Schrumpfens 50
6 FEM-basierte Modellierung von Hybridcorden 53
6.1 Simulation der Verzwirnung eines Standardcords 53
6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60
6.3 Analytisches Modell der Geometrie eines Hybridcords 65
6.4 Qualitative Charakterisierung des Hybridcordmodells 74
6.5 Parameteridenti kation und Validierung 83
6.6 Optimierungsbeispiele 92
7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96
7.1 Geometrie der Axial- und der Kreuzlage 96
7.2 Erweiterte periodische Randbedingungen 98
7.3 E ektive Schaleneigenschaften 111
7.4 Berücksichtigung der Drucklast 118
7.5 Diskretisierung der RVEs 122
7.6 Submodelltechnik 128
7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135
8 Zusammenfassung und Ausblick 146
Literaturverzeichnis 151 / The analysis of stresses and strains within textile-reinforced rubber components like air springs, tyres, driving belts, and tubes requires accurate as well as efficient computational models. On the one hand, the large deformations, the composite's strongly anisotropic properties, and the large ratio between the size of the cords and the composite necessitate a precise modeling. On the other hand, the highly loaded parts of the components are spatially confined and thus a reduction of the computational effort is desirable. These reduced models are efficient enough for performing engineering-oriented optimizations.

The two main priorities of this work are the continuum mechanical modeling of hybrid cords and the development of representative volume elements of highly loaded hybrid cord-rubber composites. Based on an anisotropic plasticity model, which takes the frictional sliding between the filaments within multifilament yarns into account, a finite element model for the simulation of the twisting process of a hybrid cord is the fundament of this work. A comparison with experimental results from tensile and torsional tests as well as images of cross sections validate the proposed hybrid cord model. The basis of the representative volume element is the extension of the classical periodic boundary conditions, which now enable to take the curvature and pressure load into account. Thus, the model is suitable to analyze the highly loaded parts of hybrid cord-rubber composites like the rolling lobe of an air spring. Finally, the set-ups of hybrid cords and hybrid cord-rubber composites are analyzed by means of parameter studies to obtain a minimized loading of the rubber, yarns, and their interface.:Inhaltsverzeichnis
Abkürzungs- und Symbolverzeichnis VIII
1 Einleitung 1
2 Grundlagen der Mathematik und der Mechanik 6
2.1 Tensoralgebra und -analysis 6
2.2 Nichtlineare Kontinuumsmechanik 11
2.3 Nichtlineare Finite-Elemente-Methode 16
3 Einordnung in den Stand der Forschung 22
4 Experimentelle Untersuchungen 26
4.1 Charakterisierung der Standardcorde 26
4.2 Charakterisierung der Hybridcorde 33
5 Materialmodelle für Multi lamentgarne 38
5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38
5.2 Numerische Lösung der Materialgleichungen 43
5.3 Analytische Lösung für reibungsfreies Gleiten 48
5.4 Modellierung des thermischen Schrumpfens 50
6 FEM-basierte Modellierung von Hybridcorden 53
6.1 Simulation der Verzwirnung eines Standardcords 53
6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60
6.3 Analytisches Modell der Geometrie eines Hybridcords 65
6.4 Qualitative Charakterisierung des Hybridcordmodells 74
6.5 Parameteridenti kation und Validierung 83
6.6 Optimierungsbeispiele 92
7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96
7.1 Geometrie der Axial- und der Kreuzlage 96
7.2 Erweiterte periodische Randbedingungen 98
7.3 E ektive Schaleneigenschaften 111
7.4 Berücksichtigung der Drucklast 118
7.5 Diskretisierung der RVEs 122
7.6 Submodelltechnik 128
7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135
8 Zusammenfassung und Ausblick 146
Literaturverzeichnis 151

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19780
Date08 September 2017
CreatorsDonner, Hendrik
ContributorsIhlemann, Jörn, Kaliske, Michael, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0045 seconds