Return to search

Analysis of anopheline mosquito behavior and identification of vector control targets in the post-genomic era

Thesis advisor: Marc A.T. Muskavitch / The protozoan Plasmodium falciparum, the mosquito-borne pathogen that causes human malaria, remains one of the most difficult infectious parasites to combat and control. Campaigns against malaria eradication have succeeded, in most instances, at the level of vector control, rather than from initiatives that have attempted to decrease malaria burden by targeting parasites. The rapid evolution and spread of insecticide-resistant mosquitoes is threatening our ability to combat vectors and control malaria. Therefore, the development, procurement and distribution of new methods of vector control are paramount. Two aspects of vector biology that can be exploited toward these ends are vector behaviors and vector-specific insecticide targets. In this thesis, I describe three aspects of vector biology with potential for the development of improved means of vector control: photopreference behavior, long non-coding RNA (lncRNA) targets and epigenetic gene ensemble targets. My studies of photopreference have revealed that specific mosquito species within the genus Anopheles, An. gambiae and An. stephensi, exhibit different photopreference behaviors, and that each gender of mosquito in these species exhibits distinct light-dependent resting behaviors. These inter-specific behavioral differences may be affected by differing numbers of long-wavelength sensing Opsin genes in each species, and my findings regarding species-specific photopreferences suggest that some behavioral interventions may need to be tailored for specific vector mosquito species. Based on the advancement of next-generation sequencing technologies and the generation by others of assembled genomes of many anopheline mosquito species, I have identified a comprehensive set of approximately 3,000 lncRNAs and find that RNA secondary structures are notably conserved within the gambiae species complex. As lncRNAs and epigenetic modifiers cooperate to modulate epigenetic regulation, I have also analyzed the conservation of epigenetic gene ensembles across a number of anopheline species, based on identification of homologous epigenetic ensemble genes in An. gambiae compared to Drosophila melanogaster. Further analyses of these ensembles illustrate that these epigenetic genes are highly stable among many anopheline species, in that I detect only eight gene family expansion or contraction events among 169 epigenetic ensemble genes within a set of 12 anopheline species. My hope is that my findings will enable deeper investigations of many behavioral and epigenetic processes in Anopheles gambiae and other anopheline vector mosquitoes and thereby enable the development of new, more effective means of vector and malaria control. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_104489
Date January 2015
CreatorsJenkins, Adam
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0023 seconds