Return to search

Alteration of endothelium-derived hyperpolarizing factor due to hypoxia-reoxygenation: implications in cardiac surgery.

Dong Yingying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 99-125). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgement --- p.ii / Publication list --- p.iii / Abstract (English) --- p.ix / Abstract (Chinese) --- p.xii / Abbreviations --- p.xiv / List of figures / tables --- p.xvi / Chapter Chapter 1. --- General Introduction / Chapter 1.1 --- The role of endothelium in regulating vascular tone --- p.1 / Chapter 1.1.1 --- Nitric oxide (NO) --- p.2 / Chapter 1.1.2 --- Endothelium-derived hyperpolarizing factor (EDHF) --- p.7 / Chapter 1.1.3 --- Prostacyclin (PGI2) --- p.20 / Chapter 1.2 --- EDHF-mediated endothelial function in coronary circulation --- p.22 / Chapter 1.2.1 --- Role of EDHF in coronary microarteries --- p.23 / Chapter 1.2.2 --- Role of EDHF in cardiac veins --- p.24 / Chapter 1.3 --- Effect of ischemia-reperfusion on endothelial function in coronary circulation --- p.25 / Chapter 1.3.1 --- Ischemia-reperfusion injury --- p.26 / Chapter 1.3.2 --- Effect of ischemia-reperfusion on endothelial function in coronary microarteries --- p.28 / Chapter 1.3.3 --- Effect of ischemia-reperfusion on endothelial function in cardiac veins --- p.29 / Chapter 1.4 --- Alteration of endothelial function during cardiac surgery / Chapter 1.4.1 --- Cardioplegia and organ preservation solutions --- p.31 / Chapter 1.4.2 --- Combined effects of hypoxia-reoxygenation and ST solution on endothelial function in coronary microarteries/cardiac veins --- p.34 / Chapter 1.4.3 --- Effect of nicorandil on endothelial function --- p.34 / Chapter Chapter 2. --- Materials and Methods --- p.37 / Chapter 2.1 --- Isometric force study in micro arteries/veins --- p.37 / Chapter 2.1.1 --- Preparation of vessels --- p.37 / Chapter 2.1.1.1 --- Preparation of porcine coronary microarteries --- p.37 / Chapter 2.1.1.2 --- Preparation of porcine cardiac veins --- p.37 / Chapter 2.1.2 --- Technique of setting up --- p.39 / Chapter 2.1.2.1 --- Mounting of microvessels --- p.39 / Chapter 2.1.2.2 --- Normalization procedure for microvessels --- p.39 / Chapter 2.1.3 --- EDHF-mediated vasorelaxation --- p.40 / Chapter 2.1.3.1 --- Precontraction and stimuli of EDHF --- p.40 / Chapter 2.1.3.2. --- “Truéحresponse of EDHF --- p.40 / Chapter 2.1.4 --- Data acquisition and analysis --- p.41 / Chapter 2.2 --- Hypoxia and reoxygenation --- p.41 / Chapter 2.2.1 --- Calibration of 02-special electrode --- p.41 / Chapter 2.2.2 --- Measurement of --- p.02 / Chapter 2.3 --- Statistical analysis --- p.42 / Chapter 2.4 --- Chemicals --- p.43 / Chapter Chapter 3. --- Hypoxia-Reoxygenation in Coronary Microarteries: Combined Effect with St Thomas Cardioplegia and Temperature on the Endothelium- derived Hyperpolarizing Factor and Protective Effect of Nicorandil --- p.44 / Chapter 3.1 --- Abstract --- p.44 / Chapter 3.2 --- Introduction --- p.45 / Chapter 3.3 --- Experimental design and analysis --- p.47 / Chapter 3.3.1 --- Vessel Preparation --- p.47 / Chapter 3.3.2 --- Normalization --- p.48 / Chapter 3.3.3 --- Hypoxia --- p.48 / Chapter 3.3.4 --- Effect of H-R on EDHF-mediated relaxation in coronary microarteries --- p.49 / Chapter 3.3.5 --- Combined effects ofH-R and ST solution on EDHF-mediated relaxation in coronary microarteries --- p.49 / Chapter 3.3.6 --- Effect of addition of nicorandil Krebs or ST solution under H-R on EDHF-mediated relaxation in coronary microarteries --- p.49 / Chapter 3.3.7 --- Data analysis --- p.50 / Chapter 3.4 --- Results --- p.51 / Chapter 3.4.1 --- Resting force --- p.51 / Chapter 3.4.2 --- U46619-induced contraction force --- p.51 / Chapter 3.4.3 --- Partial pressure of oxygen in hypoxia --- p.51 / Chapter 3.4.4 --- EDHF-mediated relaxation in coronary microarteries --- p.51 / Chapter 3.4.4.1 --- Effect of H-R --- p.51 / Chapter 3.4.4.2 --- Combined effects ofH-R and ST solution on EDHF-mediated relaxation --- p.52 / Chapter 3.4.4.3 --- Effects of addition of nicorandil to Krebs or ST solution under H-R on EDHF-mediated relaxation --- p.52 / Chapter 3.5 --- Discussion --- p.53 / Chapter 3.5.1 --- EDHF-mediated relaxation after exposure to H-R --- p.53 / Chapter 3.5.2 --- EDHF-mediated relaxation after H-R in ST solution at different temperature --- p.54 / Chapter 3.5.3 --- Effect of addition of nicorandil to Krebs or ST solution during H-R on EDHF-mediated relaxation --- p.55 / Chapter 3.5.4 --- Clinical implications --- p.56 / Chapter Chapter 4. --- Hypoxia-Reoxygenation in Cardiac Microveins: Combined Effect with Cardioplegia and Temperature on the Endothelial Function --- p.68 / Chapter 4.1 --- Abstract --- p.68 / Chapter 4.2 --- Introduction --- p.69 / Chapter 4.3 --- Experimental design and analysis --- p.73 / Chapter 4.3.1 --- Vessel Preparation --- p.73 / Chapter 4.3.2 --- Normalization --- p.73 / Chapter 4.3.3 --- Hypoxia --- p.73 / Chapter 4.3.4 --- Effect of H-R on EDHF-mediated relaxation in cardiac micro veins --- p.74 / Chapter 4.3.5 --- Combined effects of H-R and ST solution on EDHF-mediated relaxation in cardiac microveins --- p.74 / Chapter 4.3.6 --- Data analysis --- p.75 / Chapter 4.4 --- Results --- p.75 / Chapter 4.4.1 --- Resting force --- p.75 / Chapter 4.4.2 --- U46619-induced contraction force --- p.76 / Chapter 4.4.3 --- Partial pressure of oxygen in hypoxia --- p.76 / Chapter 4.4.4 --- EDHF-mediated relaxation after H-R in Krebs solution at 37°C --- p.76 / Chapter 4.4.5 --- EDHF-mediated relaxation after exposure to H-R in ST solution at different temperatures --- p.77 / Chapter 4.5 --- Discussion --- p.78 / Chapter 4.5.1 --- Effect of H-R on EDHF-mediated relaxation --- p.78 / Chapter 4.5.2 --- Combined effects of H-R with ST solution on EDHF-mediated relaxation --- p.80 / Chapter 4.5.3 --- Clinical implications / Chapter Chapter 5. --- General Discussion --- p.89 / Chapter 5.1 --- EDHF-mediated endothelial function in porcine coronary circulation --- p.89 / Chapter 5.1.1 --- EDHF in porcine coronary microarteries --- p.92 / Chapter 5.1.2 --- EDHF in porcine cardiac veins --- p.90 / Chapter 5.2 --- Alteration of EDHF-mediated function after exposure to H-R --- p.91 / Chapter 5.2.1 --- In coronary microarteries --- p.91 / Chapter 5.2.2 --- In cardiac veins --- p.92 / Chapter 5.3 --- Alteration of EDHF-mediated function after exposure to ST solution under H-R --- p.92 / Chapter 5.3.1 --- In coronary microarteries --- p.93 / Chapter 5.3.2 --- In cardiac veins --- p.93 / Chapter 5.4 --- EDHF-mediated function in nicorandil-supplemented ST solution under H-R in coronary microarteries --- p.93 / Chapter 5.5 --- Clinical implications / Chapter 5.5.1 --- H-R injury --- p.94 / Chapter 5.5.2 --- H-R injury and cardioplegic solution --- p.95 / Chapter 5.5.2 --- Nicorandil-supplementation in cardioplegic solution --- p.95 / Chapter 5.6 --- Limitation of the study --- p.96 / Chapter 5.7 --- Future investigations --- p.96 / Chapter 5.8 --- Conclusions --- p.97 / References --- p.99

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325097
Date January 2005
ContributorsDong, Yingying., Chinese University of Hong Kong Graduate School. Division of Surgery.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxiv, 125 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0028 seconds