Return to search

Impact of Fabrication Processes of Small-Molecule-Doped Polymer Thin-Films on Room-Temperature Phosphorescence

The development of organic materials displaying room-temperature phosphorescence is a research field that has attracted more and more attention in the last years. Most studies focus on designing or optimizing emitter molecules to increase the phosphorescent performance in host:emitter systems. Rarely, the overall thin-film preparation routines are compared with respect to their triplet-state luminescence yield. Herein, different film preparation techniques are investigated using the very same emitter molecule. A variation of host polymer, post-annealing temperature, and fabrication procedure is evaluated with respect to the obtained phosphorescent lifetime, photoluminescent quantum yield, and phosphorescence-to-luminescence ratio. This study elaborates the importance of different film preparation techniques and gathers a concise set of data which is helpful to anyone optimizing the phosphorescence of a particular system.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90324
Date18 April 2024
CreatorsThomas, Heidi, Haase, Katherina, Achenbach, Tim, Bärschneider, Toni, Kirch, Anton, Talnack, Felix, Mannsfeld, Stefan C. B., Reineke, Sebastian
PublisherFrontiers Media
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation2296-424X, 841413, 10.3389/fphy.2022.841413

Page generated in 0.002 seconds