Return to search

Application of Hybrid Antennas in Normalized Site Attenuation Measurements and An Improved Method for Free-space Antenna Factor Measurement

This thesis first discusses the ground plane effects of a test site on the antenna factors (AFs) of hybrid antenna (biconical log-periodic dipole array). Meanwhile, the effects of mutual coupling between antenna and its image, and the variation of active phase center are also discussed. From these analyses, a hybrid method, based on the modified SSM (Standard Site Method) and the PCPM (Phase Center and Pattern Matching) applied to the hybrid antenna for NSA (Normalized Site Attenuation) measurement is proposed. By this method, the low geometry- dependent AFs of hybrid antenna can be obtained to produce more reasonable NSA values for a test site.
Secondly, this thesis proposes a simple, fast, and accurate method to calibrate the free-space AFs of broadband EMC (Electromagnetic Compatibility) antennas. This method adopts a fixed-height configuration and a MUSIC (MUltiple SIgnal Classification) algorithm. This configuration significantly shortens measurement time and removes height-dependent calibration errors. Meanwhile, the MUSIC algorithm can remove unexpected reflections from the ground plane or any other reflecting objects, by which the free-space AFs can be calculated. In addition, this method can also automatically compensate for the phase center shift, which makes measurement easier and more convenient. To verify this method, the calibrated results are compared with other published standard methods: the mean differences can be as low as 0.25 dB for the LPDA (log-periodic dipole array), 0.42 dB for the hybrid antennas, and 0.36 dB for the horn antennas.
Finally, this thesis provides a method of using two equivalent negative inductances from two terminals of three coupled inductors to reduce the parasitic inductances of a typical three-capacitor EMI (Electromagnetic Interference) filter. Theoretical analysis and formula deduction for the design of two equivalent negative inductances are demonstrated. The experimental results show that the insertion losses of a three-capacitor EMI filter at 50 MHz can be reduced by 16.8 dB for the DM (differential-mode) and by 19.2 dB for the CM (common-mode).
In Appendix A of this thesis, an extended study of the effect of ground plane on antenna¡¦s radiation is described. A simple V-shape edge-groove design for a finite ground plane can effectively reduce the pattern ripples of a monopole. The optimal design of proposed structure can reduce the peak-to-peak pattern ripples from 26 to 4.5 dB.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0118110-211617
Date18 January 2010
CreatorsChen, Hsing-Feng
ContributorsYi-Cheng Lin, Tu-De Lin, Lih-Tyng Hwang, Chih-Wen Kuo, Chie-In Lee, Ming-Cheng Liang, Kin-Lu Wong, Ken-Huang Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0118110-211617
Rightswithheld, Copyright information available at source archive

Page generated in 0.002 seconds