Return to search

Interaction with Limited Resource Systems in the Context of Sustainable Mobility: User Experience when Dealing with Electric Vehicles in Critical Range Situations

Der globale Klimawandel gehört zu einem der wichtigsten Themen, die in Politik, Wirtschaft und Wissenschaft diskutiert werden. Der Reduzierung des weltweiten CO2-Ausstoßes wird dabei ein besonderer Stellenwert beigemessen. Auch im Transportsektor wird eine Verringerung der CO2-Emissionen angestrebt. Um dieses Ziel zu erreichen sollte die Nachhaltigkeit im Transportwesen erhöht werden.
Elektrofahrzeuge können enorm zu diesem Ziel beitragen. Dies setzt voraus, dass sie während ihrer gesamten Nutzungsphase mit Strom aus regenerativen Energien geladen werden. In diesem Zusammenhang ist es wichtig, auch bei der Produktion auf eine möglichst hohe Nachhaltigkeit zu achten. Das bedeutet, dass die Ressourcen, die zur Produktion eines Elektrofahrzeugs (zum Beispiel Energieressourcen oder eingesetzte Materialien für die Batterieproduktion) möglichst gering gehalten werden sollten.
Daher wird empfohlen, die maximale Kapazität einer Batterie und somit die verfügbare Reichweite eines Elektroautos gemäß der tatsächlichen Reichweitenanforderungen der Fahrer auszulegen. Dies bedeutet jedoch, dass Elektroautofahrer mit vergleichbar geringeren Reichweiten umgehen müssen als beim Verbrennerfahrzeug. Zusätzlich ist das Wiederherstellen der Reichweitenressourcen, also das Nachladen des Elektrofahrzeugs, mit höherem Aufwand verbunden als das Nachtanken eines Verbrennerfahrzeugs, da es heutzutage vergleichbar weniger öffentliche Schnelllademöglichkeiten gibt und das Nachladen relativ viel Zeit in Anspruch nimmt.
Daher wird die Interaktion mit den Reichweitenressourcen eines Elektrofahrzeugs als relativ herausfordernd wahrgenommen. Dies führt dazu, dass die reichweitenbezogene Nutzerzufriedenheit und das Reichweitenerleben der Fahrer beeinträchtigt und die verfügbaren Reichweitenressourcen nicht optimal ausgenutzt werden. Darüber hinaus wird die limitierte Reichweite von Elektrofahrzeugen häufig auch als eine der wichtigsten Barrieren für die generelle Akzeptanz und Nutzung von Elektrofahrzeugen diskutiert. Um das Potenzial eines Elektrofahrzeugs hinsichtlich der Erhöhung der Nachhaltigkeit im Transportsektor voll auszuschöpfen ist es daher unerlässlich, Möglichkeiten zu finden um diese Barriere unter Beachtung der Anforderungen des Fahrers zu überwinden. Ergänzend zu technischen Lösungen wie zum Beispiel der Weiterentwicklung der Batterietechnology oder der Implementierung einer größeren Anzahl von öffentlichen Schnelllademöglichkeiten, sollten weitere Strategien entwickelt werden um das Reichweitenerleben der Elektroautofahrer zu verbessern und sie zu einer möglichst effizienten Ausreizung der verfügbaren Reichweitenressourcen zu befähigen.
Reichweitenstress ist ein wichtiges Konzept in diesem Zusammenhang. Reichweitenstress ist besonders relevant in der Interaktion mit Elektrofahrzeugen auf Grund des relativ begrenzten Zugangs zu Schnellladestationen und relativ langer Ladedauern. Das Konzept ist aber auch auf anderen Arten der Mensch-Technik-Interaktion im Transportsektor übertragbar (z.B. auch auf Verbrennerfahrzeuge). Im Rahmen der vorliegenden Dissertation wird davon ausgegangen, dass sich Reichweitenstress und das breiter definierte Phänomen Reichweitenangst negativ auf die Zufriedenheit mit der Reichweite und der effizienten Nutzung von Elektrofahrzeugen auswirken. Um den maximalen Nachhaltigkeitseffekt von Elektrofahrzeugen ausschöpfen zu können, müssen daher Möglichkeiten gefunden werden um den erlebten Reichweitenstress zu verringern und der Entstehung von Stress vorzubeugen. Die vorliegende Dissertation trägt zu diesem Ziel bei, indem sie ein detailliertes Verständnis zu Reichweitenstress und dem Einfluss verschiedener Resilienzfaktoren im Rahmen von 5 Zeitschriftenartikeln (4 veröffentlich, 1 zur Veröffentlichung eingereicht) zur Verfügung stellt. Resilienzfaktoren meint dabei Faktoren, welche die Fähigkeit des Fahrers mit kritischen Situationen umzugehen erhöhen und somit das Erleben von Stress verringern.
Das erste Forschungsziel dieser Arbeit bestand darin, das Konzept Reichweitenstress zur Beschreibung des Reichweitenerlebens in kritischen Reichweitensituationen (d.h., Situationen mit geringem Reichweitenpuffer) zu etablieren, ein theoretisches Rahmenmodell zur Erklärung von Reichweitenstress und möglichen Einflussfaktoren zur Verfügung zu stellen sowie eine Methode zur Erfassung von Reichweitenstress im experimentellen Kontext zu prüfen.
Die Ergebnisse der Arbeit konnten zeigen, dass sich das Konzept Reichweitenstress dafür eignet, das Erleben der Fahrer zu beschreiben. Das bereits existierende Modell zur adaptiven Reichweitenkontrolle wurde auf den speziellen Fall einer Fahrt in einer kritischen Reichweitensituation angewendet und um das Konzept Reichweitenstress sowie möglicher, aus der Literatur abgeleiteter, Einflussfaktoren erweitert. Dies ermöglicht es, potenzielle stressreduzierende Faktoren abzuleiten um diese empirisch in einem Feldexperiment zu untersuchen, welches im Rahmen dieser Dissertation weiterentwickelt und getestet wurde. Es konnte gezeigt werden, dass es möglich ist, eine kritische Reichweitensituation in einem Feldexperiment herzustellen. Die Nutzung einer Coverstory ist in diesem Zusammenhang zu empfehlen (z.B. längere Strecke kommunizieren als dann tatsächlich gefahren werden muss).
Das zweite Forschungsziel bestand darin, den Einfluss potenzieller Resilienzfaktoren auf den erlebten Reichweitenstress empirisch zu untersuchen. Basierend auf dem weiterentwickelten Modell der adaptiven Reichweitenkontrolle wurden mehrere Faktoren abgeleitet, die einen Einfluss auf das Reichweitenerleben haben sollten: (1) Wissen über Einflussfaktoren auf die Reichweitenentwicklung oder Wissen über Möglichkeiten zum energie-effizienten Fahren, (2) praktische Fahrerfahrung mit Elektrofahrzeugen sowie das Erleben einer kritischen Reichweitensituation, (3) Persönlichkeitseigenschaften wie zum Beispiel Kontrollüberzeugungen im Umgang mit Technik und schließlich (4) technische Systemeigenschaften wie zum Beispiel die wahrgenommene Verlässlichkeit des im Fahrzeug integrierten Systems zur Reichweitenschätzung.
Die Ergebnisse zeigten, dass die Vermittlung von relevanten Informationen zur Reichweite eines Elektrofahrzeugs das Reichweitenerleben zum Teil verbessern kann. Insbesondere detaillierte Informationen zum energie-effizienten Fahren haben das Potenzial um Reichweitenstress zu verringern. Daher sollten dem Fahrer diese Informationen auf vielfältigen Wegen zur Verfügung gestellt werden. Dies könnte zum Beispiel über Informationsbroschüren, im Rahmen theoretischer Trainings zur Verbesserung der Interaktion mit dem Elektrofahrzeug, bereits vor dem Kauf durch den Berater oder eventuell sogar im Rahmen der theoretischen Fahrschulausbildung geschehen. Ein weiterer vielversprechender Ansatz wäre die Bereitstellung der relevanten Informationen direkt während der Fahrt durch Informations-, Assistenz- und Tutorsysteme.
Praktische Fahrerfahrung sowie das Erleben und erfolgreiche Bewältigen einer kritischen Reichweitensituation in einer relativ geschützten Umgebung konnten Reichweitenstress ebenfalls verringern. Daher wird empfohlen Probefahrten mit Elektrofahrzeugen sowie Praxistrainings anzubieten, die im Idealfall auch eine unterstützte Fahrt in einer kritischen Reichweitensituation beinhalten sollten. Durch das aktive Auseinandersetzen mit den Grenzen der Reichweite kann ein Lernprozess angestoßen werden, der zu einem effizienteren Umgang mit den Reichweitenressourcen des Fahrzeugs führt. Auch in diesem Kontext bieten Assistenzsysteme im Fahrzeug ein großes Potenzial. Sie sollten so gestaltet sein, dass sie einen aktiven Umgang mit der Reichweite sowie eine kritische Auseinandersetzung mit der Reichweitendynamik ermöglichen und fördern.
In der vorliegenden Dissertation konnte gezeigt werden, dass Persönlichkeitsmerkmal wie hohe Emotionale Stabilität und hohe Kontrollüberzeugungen im Umgang mit Technik mit einem geringeren erlebten Reichweitenstress zusammenhängen. Dies hat vor allem theoretische Implikationen und kann dazu beitragen, relative Unterschiede zwischen Individuen zu verstehen. Zudem konnte gezeigt werden, dass technische Systemeigenschaften wie die wahrgenommene Verlässlichkeit des Systems zur Reichweitenschätzung (z.B. zu Grunde liegender Algorithmus, Aktualität und Genauigkeit der angezeigten Reichweiteninformationen) ein wichtiger Faktor im Zusammenhang mit reduziertem Reichweitenstress darstellt. Daher sollte darauf geachtet werden, die verbliebene Reichweite eines Elektrofahrzeugs möglichst genau und verlässlich zu schätzen (z.B. Integration möglichst vieler Einflussfaktoren in den Algorithmus zur Reichweitenschätzung) sowie gut verständlich und nachvollziehbar zu präsentieren.
Das dritte Forschungsziel bestand schließlich darin, die Relevanz des Konzepts Reichweitenstress auch jenseits des experimentellen Settings zu überprüfen. Bisherige Forschung konnte zeigen, dass der alltägliche Umgang mit Elektrofahrzeugen eher durch das Vermeiden kritischer Reichweitensituationen gekennzeichnet ist. Daher stellte sich die Frage, ob Reichweitenstress und der Einfluss der Resilienzfaktoren auch im Alltagserleben eine Rolle spielt. Die Ergebnisse einer Langzeit-Feldstudie konnten zeigen, dass Reichweitenstress in Form von Sorgen oder Bedenken bezüglich der Reichweite durchaus relevant im täglichen Umgang mit Elektrofahrzeugen ist. Zudem konnte gezeigt werden, dass die identifizierten Resilienzfaktoren (z.B. praktische Fahrerfahrung und technische Systemeigenschaften) auch unter alltäglichen Bedingungen das Erleben von Reichweitenstress verringern können.
Zusammenfassend lässt sich sagen, dass Reichweitenstress ein relevantes Konzept im Zusammenhang mit der Interaktion mit Elektrofahrzeugen darstellt. Das Erleben von Reichweitenstress kann durch verschiedene Resilienzfaktoren wie zum Beispiel relevante Wissenselemente und Erfahrungen positiv beeinflusst werden. Aus den Ergebnissen lassen sich Strategien und Design-Empfehlungen für Informations- und Assistenzsysteme ableiten. Dadurch kann das Reichweitenerleben verbessert und ein effizienter Umgang mit der Reichweite gefördert werden. Dies trägt schließlich auch dazu bei, die Zufriedenheit mit Elektrofahrzeugen sowie deren Akzeptanz zu verringern. Somit kann ein Beitrag zur Erhöhung der Nachhaltigkeit im Transportsektor geleistet werden.
Das Elektrofahrzeug stellt in dem Zusammenhang nur ein Beispiel für Systeme dar, die einen Umgang mit begrenzten Ressourcen erfordern. Die theoretischen Konzepte, Annahmen, Ergebnisse sowie Schlussfolgerungen der vorliegenden Dissertation können auch auf andere Formen der Mensch-Maschine-Interaktion übertragen werden, welche sich dadurch auszeichnen, dass eine Interaktion mit dem technischen System zu einer Verringerung der Ressourcen führt. Diese Arbeit kann also auch einen Betrag dazu leisten, den Stress und die mentale Beanspruchung beim Umgang mit diesen Systemen zu verringern sowie den effizienten Umgang mit begrenzten Ressourcen zu verbessern.:I Synopsis
1 Sustainability in the Context of Road Transport
2 The Challenge of Battery Electric Vehicles‘ Limited Range and the Contribution of the Present Dissertation
3 Overview of the Dissertation
4 Interaction with Battery Electric Vehicles' Range
4.1 Psychological Reference Values for the Regulation of Range Resources
4.2 The Adaptive Control of Range Resources (ACOR) Model
5 User Experience in Critical Range Situations
5.1 The Concept of Range Stress - Conceptual Framework and Empirical Investigation
5.1.1 Range Stress as One Facet of Drivers’ Experience in Critical Range Situations
5.1.2 Adaption of the ACOR Model with the Focus on Range Stress
5.1.3 Empirical Investigation of Range Stress and the Effects of Resilience Factors
5.2 Reduction of Range Stress - Influence of Inter-Individual Differences and Technical System Characteristics
5.2.1 The Influence of Domain Specific Knowledge on Range Stress
5.2.2 The Influence of Practical Driving Experience on Range Stress
5.2.3 The Influence of Personality Traits and Technical System Characteristics on Range Stress
5.3 Everyday Range Stress - Relevance of Range Stress and Resilience Factors in the Daily Interaction with Battery Electric Vehicles
6 Research Objectives of the Dissertation
6.1 Research Objective 1: Providing a Conceptual Framework and Validating a Methodology to Examine Range Stress and the Influence of Resilience Factors
6.2 Research Objective 2: Examining the Influence of Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics on Range Stress
6.3 Research Objective 3: Investigation of Range Stress and Specific Resilience Factors in the Everyday Usage of Battery Electric Vehicles
7 Overview of the Methodology
7.1 Field-Experimental Studies to Investigate Range Stress in a Critical Range Situation
7.1.1 General Setup of the Field Studies
7.1.2 Specific Characteristics of the Particular Field Studies
7.2 Long-Term Field Trial to Investigate Range Stress in Everyday BEV Interaction
8 Discussion and Critical Reflection of the Results
8.1 Research Objective 1: Providing a Conceptual Framework and Validating a Methodology to Examine Range Stress and the Influence of Resilience Factors
8.1.1 The Adapted ACOR Model (ACOR-c) with the Focus on Range Stress
8.1.2 Empirical Investigation of Range Stress in a Field-Experimental Setting
8.2 Research Objective 2: Examining the Influence of Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics on Range Stress
8.2.1 Influence of Range-Related Knowledge on Range Stress
8.2.2 Influence of Practical Driving Experience on Range Stress
8.2.3 Subjective Range Competence as Relevant Factor for Drivers’ Range Experience
8.2.4 Influence of Personality Traits and Technical System Characteristics on Range Stress
8.3 Research Objective 3: Investigation of Range Stress and Specific Resilience Factors in the Everyday Usage of Battery Electric Vehicles
9 Implications of the Results
9.1 Implications for the Conceptual Framework and the Methodology
9.2 Implications Regarding Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics
9.3 Implications Regarding Range Stress in the Everyday Interaction with Battery Electric Vehicles
10 Conclusion
11 References
II Preliminary Study: Understanding the impact of electric vehicle driving experience on range anxiety
III Paper 1: First-time experience of critical range situations in BEV use and the positive effect of coping information
IV Paper 2: User experience with electric vehicles while driving in a critical range situation – a qualitative approach
V Paper 3: Individual differences in BEV drivers’ range stress during first encounter of a critical range situation
VI Paper 4: Positive influence of practical electric vehicle driving experience and range related knowledge on drivers' experienced range stress
VII Paper 5: Which factors can protect against range stress in everyday usage of battery electric vehicles? Towards enhancing sustainability of electric mobility systems
VIII Curriculum Vitae
IX Publications

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:21462
Date20 June 2018
CreatorsRauh, Nadine
ContributorsKrems, Josef F., Krems, Josef F., Vollrath, Mark, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds