Cette thèse présente l'étude et la réalisation d'un disjoncteur statique tout silicium et intelligent pouvant fonctionner à haute température (200°C) pour des applications de type DC basse et moyenne tensions. Plusieurs applications dans l’aéronautique, l’automobile et les transports ferroviaires poussent les composants à semi-conducteur de puissance à être utilisés à haute température. Cependant, les Si-IGBT et Si-CoolMOSTM actuellement commercialisés ont une température de jonction spécifiée et estimée à 150°C et quelque fois à 175°C. L’une des faiblesses des convertisseurs provient de la réduction du rendement avec l’augmentation de la température de jonction des composants à semiconducteur de puissance qui peut amener à leur destruction. La solution serait d’utiliser des composants grand-gap (SiC, GaN), qui autorisent un fonctionnement à une température de jonction plus élevée ;mais ces technologies en plein essor ont un coût relativement élevé. Une solution alternative serait de faire fonctionner des composants en silicium à une température de jonction voisine de 200°C afin de conserver l’un des principaux intérêts du silicium en termes de coût. Avant de commencer, le premier chapitre portera sur un état de l’art des différentes techniques de protection aussi bien mécanique que statique afin d’identifier les éléments essentiels pour la réalisation du circuit de protection. Les disjoncteurs hybrides seront aussi abordés afin de voir comment ceux-ci arrivent à combler les lacunes des disjoncteurs mécaniques et purement électroniques (statiques). A partir du chapitre précédent, un disjoncteur statique intelligent de faible puissance sera réalisé afin de mieux cerner les différentes difficultés qui sont liées à ce type de disjoncteur. Le disjoncteur statique sera réalisé à partir de fonction analogique de telle façon à ce qui soit autonome et bas cout. Il en ressort que les inductances parasites ainsi que la température des composants à base de semi-conducteurs ont un impact significatif lors de la coupure.Le chapitre III portera sur une analyse non exhaustive, vis-à-vis de la température, de différents types d’interrupteurs contrôlés à base de semi-conducteur de puissance en s’appuyant sur plusieurs caractérisations électriques (test de conduction, tension de seuil, etc) afin de sélectionner le type d’interrupteur de puissance qui sera utilisé pour le chapitre IV. Comme il sera démontré, les composants silicium à super jonction peuvent se rapprocher du comportement des composants à base de carbure de silicium pour les basses puissances. Un disjoncteur statique 400V/63A (courant de court-circuit prédictible de 5kA) sera étudié et 4développé afin de mettre en pratique ce qui a été précédemment acquis et pour montrer la compétitivité du silicium pour cette gamme de puissance. / This thesis presents a study about a smart solid state circuit breaker which can work at 200°C forlow and medium voltage continuous applications. Some applications in aeronautics, automotive,railways, petroleum extraction push power semiconductor devices to operate at high junctiontemperature. However, current commercially available Si-IGBT and Si-CoolMOS have basically amaximum junction temperature specified and rated at 150°C and even 175°C. Indeed, the main problemin conventional DC-DC converters is the switching losses of power semiconductor devices (linked to thetemperature influence on carrier lifetime, on-state voltage, on-resistance and leakage current) whichdrastically increase with the temperature rise and may drive to the device failure. Then, the use of wideband gap semiconductor like SiC or GaN devices allows higher junction temperature operation (intheory about 500°C) and higher integration (smaller heatsink, higher switching frequency, smallconverter), but are still under development and are expensive technologies. In order to keep theadvantage of low cost silicon devices, a solution is to investigate the feasibility to operate such devicesat junction temperature up to 200°C.Before starting the first starting chapter is a stat of the art of protectives circuit technics as well asmechanics as statics in order to identify essentials elements to develop the protective circuit. Hybridprotective circuits are approached too.From the precedent chapter, a smart and low power solid state circuit breaker is realized to identifyproblems which are linked with this type of circuit breaker. Solid state circuit breaker is developed withanalog components in a way that is autonomous and low cost. It’s follow that stray inductance andtemperature have an important impact when a default occurs.Chapter III give an analyze on different silicon power semiconductor dice towards temperature5relying on statics and dynamics characteristics in order to find the best silicon power switch which beused in the chapter IV. It has been shown that super junction MOSFET has the same behavior at lowpower than silicon carbide MOSFET.Solid state circuit breaker (400V/63A) has been studied and developed, in order to use all theknowledge previously acquired and to show the competitively of the silicon for this power range.
Identifer | oai:union.ndltd.org:theses.fr/2015BORD0287 |
Date | 04 December 2015 |
Creators | Roder, Raphaël |
Contributors | Bordeaux, Vinassa, Jean-Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds