Le biodiesel est obtenu par une réaction de transestérification de triglycérides d’huiles végétales ou des graisses par un monoalcool comme le méthanol. Cette réaction est aussi connue sous la désignation d’alcoholyse. La technique de production de biodiesel sous ultrasons est une nouvelle technologie prometteuse pour cette alternative aux combustibles fossiles. La production de biodiesel sous ultrasons est basée sur l’utilisation de sondes ultrasoniques. En utilisant cette technique, le biodiesel peut être produit à grande échelle. Des techniques d’ultrasonification continue peuvent causer une forte émulsion des phases de l’alcool et d’huile rapidement. Pour un temps de résidence faible, de fortes conversions sont obtenues en présence de différents catalyseurs homogènes. Par conséquent, il est nécessaire de régler les défis restants de la production de biodiesel, en termes de conception de réacteur, de récupération des catalyseurs, de coûts et d’enjeux environnementaux, pour que cette méthode de production de biodiesel devienne une technologie industrielle viable. Les technologies de production de biodiesel étudiées précédemment comportent encore certains défis comme : le problème de récupération du méthanol, la séparation des catalyseurs, le temps de réaction, la température de réaction et les impuretés dans les produits. Donc, il y a toujours un besoin continu pour le développement et la modification des technologies de production du biodiesel. Ce travail abordera le sujet du développement de la production de biodiesel sous ultrasons. L’aspect original des conclusions du travail est la vision par laquelle les ondes ultrasonores affectent la vitesse des réactions de transestérification. Les ultrasons génèrent de fines émulsions du système biphasique dans tout le volume du réacteur. Ceci va évidemment affecter le transfert de masse interphase. Le volume catalytiquement actif est toutefois restreint a une petite zone de réaction située à proximité de la sonde sonotrode. Dans cette fraction du volume, une vitesse de réaction extrêmement élevée est fort probablement associée à des effets de cavitation. Pour augmenter la production de biodiesel par l’éthanol sous ultrasons, nous avons testé les effets possibles d’une addition de méthanol ou d’autres composantes à basse tension de vapeur sur le phénomène accélérant dans les réactions de transestérification des triglycérides, du aux ultrasons. Dans la dernière partie de ce travail, nous avons étudié la réaction de transestérification de l’huile de canola avec du méthanol sur différents types de catalyseurs utilisant à la fois une agitation mécanique et les ultrasons. L’efficacité du transfert de masse dans le champ ultrasonore a amélioré la conversion maximale de transestérification comparativement aux conditions d’agitation mécanique. Dans le cas du propyl-2, 3 dicyclohexylguanidine et 1, 3- dicyclohexyl 2 n-octylguanidine (DCOG) utilisés comme catalyseurs sous ultrasons, les réactions de transestérification que nous avons obtenues ont causé une augmentation notable de la vitesse de conversion des triglycérides. Dams ce cas plus de 80% de récupération de la guanidine dans le mélange réactionnel a été possible en utilisant une colonne d’échange cationique à base de silice. Mots clés: ultrason, transestérification, huile de canola, FAME, méthoxyde de sodium, hydroxyde de sodium, l'hydroxyde de potassium, tétraméthyle d’hydroxyde d’ammonium, Guanidine, colonnes d'échange de cation de silice. / Biodiesel is obtained by transesterification reaction of triglycerides from vegetable oils or fats and a mono alcohol like methanol. This reaction is also known as alcoholysis. Ultrasound biodiesel production technique has recently emerged as a promising technology for synthesis of this alternative for fossil fuels. Ultrasound biodiesel production is based on the use of ultrasonic probes. By using this technique biodiesel production can be made on a large scale. Continuous ultrasonication technique can induce strong emulsion of alcohol and oil phases in a short time. Within very small residence time, high conversions are obtained in presence of different homogeneous catalysts. Therefore, it is necessary to solve the remaining challenges of biodiesel production, in terms of reactor design, catalyst recovery, cost and environment issues, in order to address the biodiesel production as a viable industrial technology. The previously studied biodiesel production technologies still show some challenges such as: methanol recovery issue, catalyst separation, reaction time, reaction temperature and oxide impurities in products. Therefore, there is still need to develop and modify the continuous biodiesel production technology. This work deals with the development of ultrasound biodiesel production. The original aspect of the present work conclusions is a vision of how ultrasound waves affect the transesterification reactions rates. Ultrasounds generate a fine emulsion of the biphasic system in the entire reactor volume. This will obviously affect interphase mass transfer. The catalytically active volume is however restricted to a small part of the reaction medium located in the immediate vicinity of the sonotrode probe. Within this volume fraction the extremely high reaction rate is very likely associated with the effects of cavitation. To increase the biodiesel production in presence of ethanol under ultrasound we tested the possible effects of minor methanol or other low vapor tension component additions on the accelerating phenomenon in triglycerides transesterification reactions due to ultrasounds. In the last part of the work we studied the transesterification reaction of canola oil with methanol and different types of catalysts using both mechanical stirring and ultrasonication reaction. The efficiency of mass transfer in the ultrasound field enhanced the higher rate of transesterification reaction as compared to stirring conditions. In case of propyl-2, 3 dicyclohexylguanidine and 1, 3- dicyclohexyl 2 n-octylguanidine (DCOG) as catalysts under ultrasound transesterification reaction we got noticeable TG conversion where as more than 80% regeneration of guanidine is possible from the reaction mixture by using silica cation exchanger columns. Keywords: ultrasound, transesterification, canola oil, FAME, sodium methoxide, sodium hydroxide, potassium hydroxide, Tetramethyl ammonium hydroxide, Guanidine, silica cation exchanger columns.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28233 |
Date | 24 April 2018 |
Creators | Shinde, Kiran |
Contributors | Béland, François, Kaliaguine, S. |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xix, 145 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0027 seconds