Return to search

Clay modification for the production of polystyrene nanocomposites by melt processing

Natural Montmorillonite was modified with thermally stable phosphonium surfactants to produce new organoclays for the production of polymer nanocomposites. The organoclays were characterized to determine thermal stability, basal spacing, and the surface energy at room temperature and at the processing temperature. Polystyrene (PS)/organoclay nanocomposites were prepared by melt compounding, using three different PS resins. Experimental data were obtained to elucidate the influences of temperature and molecular weight and structure of the surfactant on the surface energy of the organoclays. The phosphonium-based organoclays exhibited better thermal stability than commercially available ammonium-based organoclays. The basal spacing was similar to that found in commercially available organoclays. Transmission electron microscopy (TEM) showed that the degree of dispersion of the various organoclays in nanocomposites was related to the Hamaker constant of the organoclay at the processing temperature. Significant improvement in the degree of dispersion was realized, when blends of polystyrene with a styrene- maleic anhydride (SMA) copolymer were used. It appeared that delamination in the SMA systems was achieved directly without undergoing an intermediate intercalated structure. The influence of organoclay concentration on flexural modulus of PS- organoclay nanocomposites was determined, using the Halpin-Tsai and Hui-Shai models. The predictions were in good agreement with experimental results. The modulus of PS nanocomposites correlated well with the work adhesion at room temperature, in agreement with the equation of Shang. Barrier properties showed reasonable agreement with the predictions of models reported in literature. However, the values of aspect ratios predicted by the models were quite different from those observed experimentally. The permeability of nanocomposites to oxygen correlated with both the Hamaker constant A131 at the processing temperature / De la montmorillonite naturelle a été modifiée avec des surfactants de phosphonium qui sont thermiquement stables pour objectif de produire de nouvelles organoargiles pour la production de nanocomposites polymériques. Les organoargiles ont été caractérisées pour déterminer la stabilité thermique, l'espacement basal et l'énergie superficielle à température ambiante et à la température de préparation. Des nanocomposites de polystyrène (PS) et organoargile ont été préparés en fondant le PS, avec trois différentes résines de PS. On a évalué l'influence de la température, de la masse molaire et de la structure des surfactants sur l'énergie superficielle des organoargiles. Les organoargiles préparées avec des surfactants de phosphonium ont démontré une meilleure stabilité thermique que les organoargiles commerciales préparées avec des surfactants d'ammonium. L'espacement basal a été similaire à celui des organoargiles commerciales. La microscopie électronique en transmission a démontré que le degré de dispersion des organoargiles dans les nanocomposites est en relation avec la constante de Hamaker de l'organoargile à la température de préparation. Le degré de dispersion de l'argile a été amélioré quand un mélange de polystyrène avec un copolymère de styrène et d'anhydride maléique (SAM) a été employé. Apparemment, la delamination dans les systèmes de SAM a été réussie directement sans avoir une structure intercalée intermédiaire. On a déterminé l'influence de la concentration d'argile sur les propriétés mécaniques des nanocomposites de PS en utilisant les modèles de Halpin-Tsai et Hui-Shai. Les prédictions ont été en accord avec les résultats expérimentaux. Les modules des nanocomposites de PS sont bien corrélés avec le travail d'adhésion à la température ambiante, selon l'équation de Shang. Les propriétés de barrière ont été mesurées et sont en accord avec les prédictions des$

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.18809
Date January 2008
CreatorsUribe Calderón, Jorge Alonso
ContributorsMusa R Kamal (Supervisor1), R Bruce Lennox (Supervisor2)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemical Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0251 seconds