Return to search

Modélisation d'une population d'aérosols multi-sources et recherche des contributions de chaque source à l'échelle urbaine avec le modèle de dispersion CHIMERE

L'objectif de cette thèse est le développement et la validation d'un modèle numérique de la dynamique des particules en mélange externe et résolu en taille. Afin de suivre plusieurs compositions chimiques par classe de tailles, une nouvelle approche est présentée dans laquelle la composition chimique des particules est elle-même discrétisée suivant la fraction d'un ou plusieurs des constituants chimiques (e.g. suie, sulfate). Cette approche a pour but de mieux simuler l'évolution d'une population de particules à l'échelle locale et de particulariser des compositions chimiques typiques de certaines sources. Dans l'atmosphère, les particules interagissent essentiellement entre elles et avec les polluants gazeux par coagulation et condensation/évaporation. La première partie de la thèse a été consacrée à l'élaboration du modèle pour la coagulation, processus physique qui s'avère le plus complexe à modéliser selon notre approche du mélange externe. Dans un premier temps, les équations de la coagulation en mélange externe sont présentées et discrétisées suivant un nombre arbitraire de classe de tailles et de compositions chimiques. Plusieurs simulations numériques ont ensuite été effectuées avec ce modèle sur un même cas d'étude, en utilisant deux, trois et quatre composants chimiques. On vérifie à chaque fois que les résultats de la simulation numérique en mélange externe sont cohérents avec ceux du mélange interne du cas d'étude. Les résultats de ces simulations permettent d'apprécier l'effet de mélange de la coagulation qui produit, à partir de particules monocomposées, des particules bicomposées et tricomposées. Étant donné la complexité croissante d'un tel modèle, une attention toute particulière a été portée à l'implémentation numérique et à l'optimisation des algorithmes choisis. L'extension de cette approche à la condensation/évaporation constitue le prochain développement de ce modèle, nous en posons les bases théoriques en annexe. S'il existe aujourd'hui des données de mesure résolues en taille (SMPS), il n'y en a pas encore qui puissent être réellement validantes pour ce modèle de mélange externe, c'est-à-dire qui distinguent quantitativement plusieurs compositions chimiques par classe de taille. Aussi, dans la seconde partie de la thèse, nous avons envisagé le protocole d'une expérience en chambre permettant de mettre en évidence le mélange par coagulation de deux populations de particules de compositions différentes et d'apporter des données validantes pour le modèle développé. Deux séries d'expériences ont été menées, la première dans la chambre de grand volume CESAM et la seconde, dans le réacteur de petit volume de l'INERIS. La première série a mis en évidence l'homococagulation de chaque distribution polydispersée prise séparément et dans une moindre mesure, l'hétérocoagulation des deux distributions de nature différentes (NaBr et KBr) entre elles. La seconde série a montré la possibilité d'observer simultanément deux distributions monodispersées de particules de compositions différentes (CaSO4 et KBr), prérequis pour ce cas. Au final, les résultats de mesure se sont avérés insuffisants pour produire des données validantes pour le modèle, à cause du trop grand écart-type des distributions polydispersées dans la chambre de grand volume et à cause du dépôt au paroi qui domine dans le réacteur de petit volume. Des analyses au microscope électronique ont cependant attesté de la présence de particules issues de la coagulation entre les deux natures. A la suite des différentes expériences menées, nous revenons sur le protocole envisagé et proposons quelques pistes d'améliorations

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00806520
Date14 December 2012
CreatorsDergaoui, Hilel
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds