Dans cette thèse, nous nous intéressons à l’étude de l’arithmétique (le principe de Hasse, l’approximation faible, et l’obstruction de Brauer-Manin) des zéro-cycles sur les variétés algébriques définies sur des corps de nombres. Nous introduisons la notion de sous-ensemble hilbertien généralisé. En utilisant la méthode de fibration, nous démontrons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1; et établissons l’exactitude d’une suite de type global-local concernant les groupes de Chow des zéro-cycles, pour certaines variétés qui admettent une structure de fibration au-dessus d’une courbe lisse ou au-dessus de l’espace projectif, où les hypothèses arithmétiques sont posées seulement sur les fibres au-dessus d’un sous-ensemble hilbertien généralisé.De plus, nous relions l’arithmétique des points rationnels et l’arithmétique des zérocycles de degré 1 sur les variétés géométriquement rationnellement connexes. Comme application, nous trouvons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1 sur- les espaces homogènes d’un groupe algébrique linéaire à stabilisateur connexe,- certains fibrés en surfaces de Châtelet au-dessus d’une courbe lisse ou au-dessus de l’espace projectif (en particulier, les solides de Poonen). / This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, and the Brauer-Manin obstruction) for zero-cycles on algebraic varieties defined over number fields. We introduce the notion of generalized Hilbertian subset. By using the fibration method, we prove that the Brauer-Manin obstruction is the only obstruction tothe Hasse principle and to the weak approximation for zero-cycles of degree 1; and establish the exactness of a sequence of global-local type concerning Chow groups of zero-cycles, for certain varieties which admit a fibration structure overa smooth curve or over the projective space, where the arithmetic hypotheses are only posed on the fibers over a generalized Hilbertian subset. Moreover, we relate the arithmetic of rational points and that of zero-cycles of degree 1 on geometrically rationally connected varieties. As an application, we find that the Brauer-Manin obstruction is the only obstruction to the Hasse principle and to the weak approximation for zero-cycles of degree 1 on- homogeneous spaces of a linear algebraic group with connected stabilizer,- certain varieties fibered into Chatelet surfaces over a smooth curve or over the projective space (in particular, Poonen's threefolds).
Identifer | oai:union.ndltd.org:theses.fr/2011PA112190 |
Date | 04 October 2011 |
Creators | Liang, Yongqi |
Contributors | Paris 11, Harari, David |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds