L’objectif en arrière-plan est de montrer que plusieurs modèles de marches aléatoires en milieux aléatoires (MAMA) sont reliés à un modèle-jouet appelé le modèle de piège de Bouchaud. Le domaine des MAMA est très vaste, mais nous nous intéressons particulièrement à une classe de modèle où la marche est réversible et directionnellement transiente.
En particulier, nous verrons pourquoi on pense que ces modèles se ressemblent et quel genre de similarités on s’attend à obtenir, une fois qu’on aura présenté le modèle de Bouchaud. Nous verrons aussi quelques techniques de base utilisés de ce domaine, telles que les temps de régénérations.
Comme contribution, nous allons démontrer un théorème central limite pour la marche aléatoire β-biaisée sur un arbre de Galton-Watson. / This Master thesis is part of a larger project of linking the behaviours of a certain type of random walks in random environments (RWRE) with those of a toy model called the Bouchaud’s trap model. The domain of RWRE is very wide but our interest will be on a particular kind of models which are reversible and directionally transient.
More specifically, we will see why those models have similar behaviours and what kind of results we could expect once we have reviewed the Bouchaud’s trap model. We will also present some basic technic used in this field, such as regeneration times.
As a contribution, we will demonstrate a central limit theorem for the β-biased random walk on a Galton-Watson tree.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/18777 |
Date | 09 1900 |
Creators | Rakotobe, Joss |
Contributors | Fribergh, Alexander |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0026 seconds