• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Marches aléatoires réversibles en milieu aléatoire

Mourrat, Jean-Christophe 13 May 2010 (has links) (PDF)
Nous nous intéressons à deux modèles de marches aléatoires réversibles en milieu aléatoire. Le premier est la marche aléatoire en conductances aléatoires. Nous montrons que l'environnement vu par cette marche converge vers l'équilibre à une vitesse polynomiale au sens de la variance, notre hypothèse principale étant que les conductances sont uniformément minorées. Notre méthode se base sur l'établissement d'une inégalité de Nash, suivie soit d'une comparaison avec la marche aléatoire simple, soit d'une analyse plus directe fondée sur une méthode de martingale. Pour le deuxième modèle qui nous intéresse, on attribue pour tout x de Z^d une valeur positive \tau_x. La marche construite, souvent appelée "modèle de Bouchaud", est réversible par rapport à la mesure de poids (\tau_x). Nous supposons que ces poids sont indépendants, de même loi et à queue polynomiale. Nous donnons le comportement asymptotique de la valeur propre principale du générateur de cette marche aléatoire, avec conditions aux bords de Dirichlet. La caractéristique principale du résultat est une transition de phase, qui a lieu pour un seuil dépendant de la dimension. Lorsque les (\tau_x) ne sont pas intégrables et pour d > 4, nous obtenons également la limite d'échelle, sous-diffusive, de ce modèle. La méthode consiste dans un premier temps à exprimer la marche aléatoire comme un changement de temps d'une marche aléatoire en conductances aléatoires. Il suffit alors de montrer que ce changement de temps, une fois normalisé, converge sous la loi moyennée vers un subordinateur stable. Ce résultat est obtenu en utilisant les propriétés de vitesse de convergence à l'équilibre de l'environnement vu par la particule montrées précédemment.
2

Diffusions en milieux aléatoires et marches multi-excitées

Singh, Arvind 27 June 2007 (has links) (PDF)
Ce travail regroupe cinq articles et porte sur l'étude de certaines propriétés des diffusions en milieux aléatoires et des marches multi-excitées.<br /><br />Dans la première partie, nous considérons le modèle de la diffusion aléatoire dans un potentiel aléatoire ainsi que son analogue discret : la marche aléatoire en milieu aléatoire. On étudie, dans le cas récurrent, le comportement asymptotique presque sûr de ces processus lorsque le potentiel sous-jacent est dans le domaine d'attraction d'un processus stable. On caractérise ensuite les différents régimes de croissance d'une diffusion transiente lorsque son potentiel est un processus de Lévy sans sauts positifs. <br /><br />Dans la seconde partie, nous étudions le modèle récent de la marche multi-excitée. Nous établissons en particulier un critère permettant de déterminer si la vitesse asymptotique de la marche est strictement positive. Nous caractérisons de plus, dans le cas d'une vitesse nulle, tous les régimes de transiences possibles.
3

Théorème Central Limite pour les marches aléatoires biaisées sur les arbres de Galton-Watson avec feuilles

Rakotobe, Joss 09 1900 (has links)
L’objectif en arrière-plan est de montrer que plusieurs modèles de marches aléatoires en milieux aléatoires (MAMA) sont reliés à un modèle-jouet appelé le modèle de piège de Bouchaud. Le domaine des MAMA est très vaste, mais nous nous intéressons particulièrement à une classe de modèle où la marche est réversible et directionnellement transiente. En particulier, nous verrons pourquoi on pense que ces modèles se ressemblent et quel genre de similarités on s’attend à obtenir, une fois qu’on aura présenté le modèle de Bouchaud. Nous verrons aussi quelques techniques de base utilisés de ce domaine, telles que les temps de régénérations. Comme contribution, nous allons démontrer un théorème central limite pour la marche aléatoire β-biaisée sur un arbre de Galton-Watson. / This Master thesis is part of a larger project of linking the behaviours of a certain type of random walks in random environments (RWRE) with those of a toy model called the Bouchaud’s trap model. The domain of RWRE is very wide but our interest will be on a particular kind of models which are reversible and directionally transient. More specifically, we will see why those models have similar behaviours and what kind of results we could expect once we have reviewed the Bouchaud’s trap model. We will also present some basic technic used in this field, such as regeneration times. As a contribution, we will demonstrate a central limit theorem for the β-biased random walk on a Galton-Watson tree.
4

Étude de la marche aléatoire biaisée en milieu aléatoire

Laliberté, Nicolas 11 1900 (has links)
No description available.

Page generated in 0.1139 seconds