• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Marches aléatoires réversibles en milieu aléatoire

Mourrat, Jean-Christophe 13 May 2010 (has links) (PDF)
Nous nous intéressons à deux modèles de marches aléatoires réversibles en milieu aléatoire. Le premier est la marche aléatoire en conductances aléatoires. Nous montrons que l'environnement vu par cette marche converge vers l'équilibre à une vitesse polynomiale au sens de la variance, notre hypothèse principale étant que les conductances sont uniformément minorées. Notre méthode se base sur l'établissement d'une inégalité de Nash, suivie soit d'une comparaison avec la marche aléatoire simple, soit d'une analyse plus directe fondée sur une méthode de martingale. Pour le deuxième modèle qui nous intéresse, on attribue pour tout x de Z^d une valeur positive \tau_x. La marche construite, souvent appelée "modèle de Bouchaud", est réversible par rapport à la mesure de poids (\tau_x). Nous supposons que ces poids sont indépendants, de même loi et à queue polynomiale. Nous donnons le comportement asymptotique de la valeur propre principale du générateur de cette marche aléatoire, avec conditions aux bords de Dirichlet. La caractéristique principale du résultat est une transition de phase, qui a lieu pour un seuil dépendant de la dimension. Lorsque les (\tau_x) ne sont pas intégrables et pour d > 4, nous obtenons également la limite d'échelle, sous-diffusive, de ce modèle. La méthode consiste dans un premier temps à exprimer la marche aléatoire comme un changement de temps d'une marche aléatoire en conductances aléatoires. Il suffit alors de montrer que ce changement de temps, une fois normalisé, converge sous la loi moyennée vers un subordinateur stable. Ce résultat est obtenu en utilisant les propriétés de vitesse de convergence à l'équilibre de l'environnement vu par la particule montrées précédemment.
2

Limite d'échelle de cartes aléatoires en genre quelconque

Bettinelli, Jérémie 26 October 2011 (has links) (PDF)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise.
3

Étude de marches aléatoires sur un arbre de Galton-Watson / Study of random walks on a Galton-Watson tree

De Raphélis-Soissan, Loïc, Georges 20 February 2017 (has links)
Ce travail est consacré à l'étude de limites d'échelle de différentes fonctionnelles de marches aléatoires sur un arbre de Galton-Watson, potentiellement en milieu aléatoire. La marche aléatoire que nous considérons sur cet arbre est une marche aux plus proches voisins récurrente nulle, dont les probabilités de transition dépendent de l'environnement. Plus particulièrement, nous étudions la trace de la marche, c'est-à-dire le sous-arbre constitué des sommets visités par celle-ci. Nous considérons d'abord le cas où dans un certain sens l'environnement est à variance finie, et nous montrons que bien renormalisée la trace converge vers la forêt brownienne. Nous considérons ensuite des hypothèses plus faibles, et nous montrons que la fonction de hauteur de la marche (c'est-à-dire la suite des hauteurs prises par la marche) converge vers le processus de hauteur en temps continu d'un processus de Lévy spectralement positif strictement stable, et que la trace de la marche converge vers l'arbre réel codé par ce même processus. La stratégie employée pour établir ces résultats repose sur l'étude d'un type d'arbres que nous introduisons dans cette thèse : ceux-ci sont des arbres de Galton-Watson à deux types, l'un des types étant stérile, et à longueur d'arête. Notre principal résultat concernant ces arbres assure que leur fonction de hauteur satisfait un principe d'invariance, similaire à celui vérifié par les arbres de Galton-Watson simples. Ces arbres trouvent également une application directe dans les arbres de Galton-Watson multitype à infinité de types, un lien explicite entre les deux nous permettant de montrer qu'ils satisfont également le même principe d'invariance. / This work is devoted to the study of scaling limits of different functionals of random walks on a Galton-Watson tree, potentially in random environment. The randow walk we consider is a null recurrent nearest-neigbout random walk, the probability transition of which depend on the environment. More precisely, we study the trace of the walk, that is the sub-tree made up of the vertices visited by the walk. We first consider the case where in a certain sense the environment has finite variance, and we show that when well-renormalised, the trace converges towards the Brownian forest. We then consider hypotheses of regular variation on the environement, and we show that the height function of the walk (that is the sequence of heights in the tree of the walk) converges towards the continuous time height process of a spectrally positive strictly stable Lévy process, and that the trace of the walk converges towards the real tree coded by this very process. The strategy used to prove these two results is based on the study of a certain kind of trees that we introduce in this thesis: they are Galton-Watson trees with two types, one of which being sterile, and with edge lengths. Our main result about these trees states that their height functions satisfies an invariance principle, similar to that verified by simple Galton-Watson trees. These trees also find a direct application in multitype Galton-Watson trees with infinitely many types, as an explicit link between these two kind of trees allow us to show that they satisfy also the same invariance principle.
4

Limite d'échelle de cartes aléatoires en genre quelconque / Scaling Limit of Arbitrary Genus Random Maps

Bettinelli, Jérémie 26 October 2011 (has links)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise. / In this work, we discuss the scaling limits of two particular classes of maps. In a first time, we address bipartite quadrangulations of fixed positive genus g and, in a second time, planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We view these objects as metric spaces by endowing their sets of vertices with the graph metric, suitably rescaled.We show that a map uniformly chosen among the maps having n faces in one of these two classes converges in distribution, at least along some subsequence, toward a limiting random metric space as n tends to infinity. This convergence holds in the sense of the Gromov--Hausdorff topology on compact metric spaces. We moreover have the following information on the limiting space. In the first case, it is almost surely a space of Hausdorff dimension 4 that is homeomorphic to the genus g surface. In the second case, it is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the unit disc of R^2. We also show that in the second case, if the length of the boundary is little-o of the square root of the number of faces, the same convergence holds without extraction and the limit is the same as for quadrangulations without boundary, that is the Brownian map.
5

Coupe et reconstruction d'arbres et de cartes aléatoires / Cutting and rebuilding random trees and maps

Dieuleveut, Daphné 10 December 2015 (has links)
Cette thèse se divise en deux parties. Nous nous intéressons dans un premier temps à des fragmentations d'arbres aléatoires, et aux arbres des coupes associés. Dans le cadre discret, les modèles étudiés sont des arbres de Galton-Watson, fragmentés en enlevant successivement des arêtes choisies au hasard. Nous étudions également leurs analogues continus, l'arbre brownien et les arbres stables, que l'on fragmente en supprimant des points donnés par des processus ponctuels de Poisson. L'arbre des coupes associé à l'un de ces processus, discret ou continu, décrit la généalogie des composantes connexes créées au fur et à mesure de la dislocation. Pour une fragmentation qui se concentre autour de nœuds de grand degré, nous montrons que l'arbre des coupes continu est la limite d'échelle des arbres des coupes discrets correspondants. Dans les cas brownien et stable, nous montrons également que l'on peut reconstruire l'arbre initial à partir de son arbre des coupes et d'un étiquetage bien choisi de ses points de branchement. Nous étudions ensuite un problème portant sur les cartes aléatoires, et plus précisément sur la quadrangulation uniforme infinie du plan (UIPQ). De récents résultats montrent que dans l'UIPQ, toutes les géodésiques infinies issues de la racine sont essentiellement similaires. Nous déterminons la quadrangulation limite obtenue en ré-enracinant l'UIPQ ''à l'infini'' sur de l'une de ces géodésiques. Cette étude se fait en découpant l'UIPQ le long de cette géodésique. Nous étudions les deux parties ainsi créées via une correspondance avec des arbres discrets, puis nous obtenons la limite souhaitée par recollement. / This PhD thesis is divided into two parts. First, we study some fragmentations of random trees and the associated cut-trees. The discrete models we are interested in are Galton-Watson trees, which are cut down by recursively removing random edges. We also consider their continuous counterparts, the Brownian and stable trees, which are fragmented by deleting the atoms of Poisson point processes. For these discrete and continuous models, the associated cut-tree describes the genealogy of the connected components which appear during the cutting procedure. We show that for a ''vertex-fragmentation'', in which the nodes having a large degree are more susceptible to be deleted, the continuous cut-tree is the scaling limit of the corresponding discrete cut-trees. In the Brownian and stable cases, we also give a transformation which rebuilds the initial tree from its cut-tree and a well chosen labeling of its branchpoints. The second part relates to random maps, and more precisely the uniform infinite quadrangulation of the plane (UIPQ). Recent results show that in the UIPQ, all infinite geodesic rays originating from the root are essentially similar. We identify the limit quadrangulation obtained by rerooting the UIPQ at a point ''at infinity'' on one of these geodesics. To do this, we split the UIPQ along this geodesic ray. Using a correspondence with discrete trees, we study the two sides, and obtain the desired limit by gluing them back together.

Page generated in 0.0638 seconds