1 |
Théorèmes limites et ordres stochastiques relatifs aux lois et processus stables / Limits theorems and stochastic orders related to stable laws and processesManou-Abi, Solym Mawaki 18 June 2015 (has links)
Cette thèse se compose de trois parties indépendantes, toutes en rapport avec les lois et processus stables. Dans un premier temps, nous établissons des théorèmes de convergence (principe d'invariance) vers des processus stables. Les objets considérés sont des fonctionnelles additives de carrés non intégrables d'une chaîne de Markov à temps discret. L'approche envisagée repose sur l'utilisation des coefficients de mélange pour les chaînes de Markov. Dans un second temps, nous obtenons des vitesses de convergence vers des lois stables dans le théorème central limite généralisé à l'aide des propriétés de la distance idéale de Zolotarev. La dernière partie est consacrée à l'étude des ordres stochastiques convexes ou inégalités de comparaison convexe entre des intégrales stochastiques dirigées par des processus stables. L'idée principale sur laquelle reposent les résultats consiste à adapter au contexte stable le calcul stochastique forward-backward. / This PhD Thesis is composed of three independent parts about stable laws and processes. In the first part, we establish convergence theorems (invariance principle) to stable processes, for additive functionals of a discrete time Markov chain that are not assumed to be square-integrable. The method is based on the use of mixing coefficients for Markov chains. In the second part, we obtain some rates of convergence to stable laws in the generalized central limit theorem by means of the Zolotarev ideal probability metric. The last part of the thesis is devoted to the study of convex ordering or convex comparison inequalities between stochastic integrals driven by stable processes. The main idea of our results is based on the forward-backward stochastic calculus for the stable case.
|
2 |
Options exotiques, lois infiniment divisibles et processus de Lévy : aspects théoriques et pratiques / Exotic options, infinitely divisible distributions and Lévy processes : theoretical and applied perspectivesCoqueret, Guillaume 14 September 2012 (has links)
Cette thèse comporte trois parties indépendantes. La première traite des formes fermées de la factorisation de Wiener-Hopf pour les processus de Lévy. Nous recensons la demie-douzaine de cas pour lesquels la factorisation peut être écrite explicitement, et mettons l'accent sur les fonctions méromorphes ayant des pôles d'ordre deux. La deuxième partie se focalise sur l'inversion de la transformée de Laplace. Son but est de présenter une nouvelle méthode approximative, dans un contexte probabiliste. Si la transformée de Laplace a un comportement facilement identifiable en zéro et si la densité associée est bornée, alors cette méthode permet d'obtenir une borne uniforme pour l'erreur commise sur la fonction de répartition. L'efficacité de cette méthode est testée sur deux exemples non triviaux. Enfin, la troisième et dernière partie est dédiée au pricing d'options exotiques dans le modèle log-stable aux moments finis de Carr et Wu. Dans certains cas, il est possible d'obtenir des formules fermées sous forme de séries convergentes pour les prix d’options lookback et barrières. Pour tous les autres cas, nous étudions divers techniques de simulation pour les trajectoires du processus sous-jacent, dans le but d'une évaluation par méthode de Monte-Carlo. / This thesis consists of three independent chapters.The first one deals with closed forms of the Wiener-hopf factorization for Lévy processes. We list the known cases for which this factorization can be explicitely written and provide a detailed account when the underlying functions are meromorphic of order two.The second chapter focuses on the inversion of the Laplace transform. We present an approximative method in a probabilistic setting. If the behavior of the Laplace transform near zero is known and if the underlying density is bounded, then this method yields a uniform bound for the error on the cumulative distribution function. We test this technique on two non-trivial examples.The final chapter of the thesis is dedicated to the pricing of exotic options in the Finite Moment Log-Stable model of Carr and Wu. In some cases, it is possible to obtain closed forms (converging series) for the prices of lookback and barrier options. In all other cases, we study several simulation techniques for the trajectories of the underlying for the purpose of Monte-Carlo valuation.
|
3 |
Estimation de processus de sauts / Estimation of the jump processesNguyen, Thi Thu Huong 06 December 2018 (has links)
Dans cette thèse, on considère une équation différentielle stochastique gouvernée par un processus de Lévy de saut pur dont l’indice d’activité des sauts α ∈ (0, 2) et on observe des données haute fréquence de ce processus sur un intervalle de temps fixé. Cette thèse est consacrée tout d’abord à l’étude du comportement de la densité du processus en temps petit. Ces résultats permettent ensuite de montrer la propriété LAMN (Local Asymptotic Mixed Normality) pour les paramètres de dérive et d’échelle. Enfin, on étudie des estimateurs de l’indice α du processus.La première partie traite du comportement asymptotique de la densité en temps petit du processus. Le processus est supposé dépendre d’un paramètre β = (θ,σ) et on étudie, dans cette partie, la sensibilité de la densité par rapport à ce paramètre. Cela étend les résultats de [17] qui étaient restreints à l’indice α ∈ (1,2) et ne considéraient que la sensibilité par rapport au paramètre de dérive. En utilisant le calcul de Malliavin, on obtient la représentation de la densité, de sa dérivée et de sa dérivée logarithmique comme une espérance et une espérance conditionnelle. Ces formules de représentation font apparaître des poids de Malliavin dont les expressions sont données explicitement, ce qui permet d’analyser le comportement asymptotique de la densité en temps petit, en utilisant la propriété d’autosimilarité du processus stable.La deuxième partie de cette thèse concerne la propriété LAMN (Local Asymptotic Mixed Normality) pour les paramètres. Le coefficient de dérive et le coefficient d’échelle dépendent tous les deux de paramètres inconnus et on étend les résultats de [17]. On identifie l’information de Fisher asymptotique ainsi que les vitesses optimales de convergence. Ces quantités dépendent de l’indice αLa troisième partie propose des estimateurs pour l’indice d’activité des sauts α ∈ (0,2) basés sur des méthodes de moments qui généralisent les résultats de Masuda [53]. On montre la consistence et la normalité asymptotique des estimateurs et on illustre les résultats par des simulations numériques / In this thesis, we consider a stochastic differential equation driven by a truncated pure jump Lévy process with index α ∈(0,2) and observe high frequency data of the process on a fixed observation time. We first study the behavior of the density of the process in small time. Next, we prove the Local Asymptotic Mixed Normality (LAMN) property for the drift and scaling parameters from high frequency observations. Finally, we propose some estimators of the index parameter of the process.The first part deals with the asymptotic behavior of the density in small time of the process. The process is assumed to depend on a parameter β = (θ,σ) and we study, in this part, the sensitivity of the density with respect to this parameter. This extends the results of [17] which were restricted to the index α ∈ (1,2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of the density, its derivative and its logarithm derivative as an expectation and a conditional expectation. These representation formulas involve some Malliavin weights whose expressions are given explicitly and this permits to analyze the asymptotic behavior in small time of the density, using the self-similarity property of the stable process.The second part of this thesis concerns the Local Asymptotic Mixed Normality property for the parameters. Both the drift coefficient and scale coefficient depend on the unknown parameters. Extending the results of [17], we compute the asymptotic Fisher information and find that the rate in the Local Asymptotic Mixed Normality property depends on the index α.The third part proposes some estimators of the jump activity index α ∈ (0,2) based on the method of moments as in Masuda [53]. We prove the consistency and asymptotic normality of the estimators and give some simulations to illustrate the finite-sample behaviors of the estimators
|
4 |
Marches aléatoires réversibles en milieu aléatoireMourrat, Jean-Christophe 13 May 2010 (has links) (PDF)
Nous nous intéressons à deux modèles de marches aléatoires réversibles en milieu aléatoire. Le premier est la marche aléatoire en conductances aléatoires. Nous montrons que l'environnement vu par cette marche converge vers l'équilibre à une vitesse polynomiale au sens de la variance, notre hypothèse principale étant que les conductances sont uniformément minorées. Notre méthode se base sur l'établissement d'une inégalité de Nash, suivie soit d'une comparaison avec la marche aléatoire simple, soit d'une analyse plus directe fondée sur une méthode de martingale. Pour le deuxième modèle qui nous intéresse, on attribue pour tout x de Z^d une valeur positive \tau_x. La marche construite, souvent appelée "modèle de Bouchaud", est réversible par rapport à la mesure de poids (\tau_x). Nous supposons que ces poids sont indépendants, de même loi et à queue polynomiale. Nous donnons le comportement asymptotique de la valeur propre principale du générateur de cette marche aléatoire, avec conditions aux bords de Dirichlet. La caractéristique principale du résultat est une transition de phase, qui a lieu pour un seuil dépendant de la dimension. Lorsque les (\tau_x) ne sont pas intégrables et pour d > 4, nous obtenons également la limite d'échelle, sous-diffusive, de ce modèle. La méthode consiste dans un premier temps à exprimer la marche aléatoire comme un changement de temps d'une marche aléatoire en conductances aléatoires. Il suffit alors de montrer que ce changement de temps, une fois normalisé, converge sous la loi moyennée vers un subordinateur stable. Ce résultat est obtenu en utilisant les propriétés de vitesse de convergence à l'équilibre de l'environnement vu par la particule montrées précédemment.
|
5 |
Diffusions en milieux aléatoires et marches multi-excitéesSingh, Arvind 27 June 2007 (has links) (PDF)
Ce travail regroupe cinq articles et porte sur l'étude de certaines propriétés des diffusions en milieux aléatoires et des marches multi-excitées.<br /><br />Dans la première partie, nous considérons le modèle de la diffusion aléatoire dans un potentiel aléatoire ainsi que son analogue discret : la marche aléatoire en milieu aléatoire. On étudie, dans le cas récurrent, le comportement asymptotique presque sûr de ces processus lorsque le potentiel sous-jacent est dans le domaine d'attraction d'un processus stable. On caractérise ensuite les différents régimes de croissance d'une diffusion transiente lorsque son potentiel est un processus de Lévy sans sauts positifs. <br /><br />Dans la seconde partie, nous étudions le modèle récent de la marche multi-excitée. Nous établissons en particulier un critère permettant de déterminer si la vitesse asymptotique de la marche est strictement positive. Nous caractérisons de plus, dans le cas d'une vitesse nulle, tous les régimes de transiences possibles.
|
6 |
Estimation des indices de stabilité et d'autosimilarité par variations de puissances négatives / Estimation of the stability and the self-similarity indices through negative power variationsDang, Thi To Nhu 05 July 2016 (has links)
Ce travail porte sur l'estimation des indices d'autosimilarité et de stabilité d'un processus ou champ stable fractionnaire et autosimilaire ou d'un processus stable multifractionnaire.Plus précisément, soit X un processus ou un champ stable H-autosimilaire à accroissements stationnaires (H-sssi) ou un processus stable multifractionnaire. Nous observons X aux points k/n, k=0,..., n.Nos estimations sont basées sur des variations de puissances négatives beta avec -1/2<beta<0: en effet, ces variations ont une espérance et une variance.Nous obtenons des estimateurs consistants, avec les vitesses de convergence, pour plusieurs processus H-sssi alpha-stables classiques (mouvement brownien fractionnaire, mouvement stable fractionnaire linéaire, processus de Takenaka, movement de Lévy).De plus, nous obtenons la normalité asymptotique de nos estimations pour le mouvement brownien fractionnaire et le mouvement de Lévy.Ce nouveau cadre nous permet de donner une estimation pour le paramètre d'autosimilarité H sans hypothèse sur alpha et, vice versa, nous pouvons estimer l'indice stable alpha sans hypothèse sur H.En généralisant, pour le cas d'une dimension supérieure à 1, nous obtenons également des estimateurs consistants pour H et alpha. Les résutats sont illustrés par des exemples: champ de Lévy fractionnaire, champ stable fractionnaire linéaire, champ de Takenaka.Pour les processus stables multifractionnaires, nous nous concentrons sur le mouvement brownien multifractionnaire et le processus stable multifractionnaire linéaire. Dans ces deux cas, nous obtenons la consistance des estimateurs pour la fonction d'autosimilarité à un temps donné u et pour l'indice stable alpha. / This work is concerned with the estimation of the self-similarity and the stability indices of a H-self-similarity stable process (field) or a multifractional stable process.More precisely, let X be a H-sssi (self-similar stationary increments) symmetric alpha-stable process (field) or a multifractional stable process. We observe X at points k/n, k=0,...,n.Our estimates are based on beta-negative power variations with -1/2<beta<0, thanks to the existence of expectations and covariances of these variations.We get consistent estimators, with rates of convergence, for several classical H-sssi alpha-stable processes(fractional Brownian motion, well-balanced linear fractional stable motion, Takenaka's processes, Lévy motion). Moreover, we get asymptotic normality of our estimates for fractional Brownian motion and Lévy motion.This new framework allows us to give an estimator for the self-similarity parameter H without assumptions on alpha and, vice versa, we can estimate the stable index alpha without assumptions on H.Generalizing for the case of high dimensions, we also obtain consistent estimators for H and alpha. The results are illustrated with some familiar examples: Lévy fractional Brownian field, well-balanced linear fractional stable field and Takenaka random field.For multifractional stable process, we concentrate on multifractional Brownian motion and linear multifractional stable process. In these two cases, we get the consistency of the estimators for the value of self-similarity function H at a fixed time u and for the stability index alpha.
|
7 |
Étude de marches aléatoires sur un arbre de Galton-Watson / Study of random walks on a Galton-Watson treeDe Raphélis-Soissan, Loïc, Georges 20 February 2017 (has links)
Ce travail est consacré à l'étude de limites d'échelle de différentes fonctionnelles de marches aléatoires sur un arbre de Galton-Watson, potentiellement en milieu aléatoire. La marche aléatoire que nous considérons sur cet arbre est une marche aux plus proches voisins récurrente nulle, dont les probabilités de transition dépendent de l'environnement. Plus particulièrement, nous étudions la trace de la marche, c'est-à-dire le sous-arbre constitué des sommets visités par celle-ci. Nous considérons d'abord le cas où dans un certain sens l'environnement est à variance finie, et nous montrons que bien renormalisée la trace converge vers la forêt brownienne. Nous considérons ensuite des hypothèses plus faibles, et nous montrons que la fonction de hauteur de la marche (c'est-à-dire la suite des hauteurs prises par la marche) converge vers le processus de hauteur en temps continu d'un processus de Lévy spectralement positif strictement stable, et que la trace de la marche converge vers l'arbre réel codé par ce même processus. La stratégie employée pour établir ces résultats repose sur l'étude d'un type d'arbres que nous introduisons dans cette thèse : ceux-ci sont des arbres de Galton-Watson à deux types, l'un des types étant stérile, et à longueur d'arête. Notre principal résultat concernant ces arbres assure que leur fonction de hauteur satisfait un principe d'invariance, similaire à celui vérifié par les arbres de Galton-Watson simples. Ces arbres trouvent également une application directe dans les arbres de Galton-Watson multitype à infinité de types, un lien explicite entre les deux nous permettant de montrer qu'ils satisfont également le même principe d'invariance. / This work is devoted to the study of scaling limits of different functionals of random walks on a Galton-Watson tree, potentially in random environment. The randow walk we consider is a null recurrent nearest-neigbout random walk, the probability transition of which depend on the environment. More precisely, we study the trace of the walk, that is the sub-tree made up of the vertices visited by the walk. We first consider the case where in a certain sense the environment has finite variance, and we show that when well-renormalised, the trace converges towards the Brownian forest. We then consider hypotheses of regular variation on the environement, and we show that the height function of the walk (that is the sequence of heights in the tree of the walk) converges towards the continuous time height process of a spectrally positive strictly stable Lévy process, and that the trace of the walk converges towards the real tree coded by this very process. The strategy used to prove these two results is based on the study of a certain kind of trees that we introduce in this thesis: they are Galton-Watson trees with two types, one of which being sterile, and with edge lengths. Our main result about these trees states that their height functions satisfies an invariance principle, similar to that verified by simple Galton-Watson trees. These trees also find a direct application in multitype Galton-Watson trees with infinitely many types, as an explicit link between these two kind of trees allow us to show that they satisfy also the same invariance principle.
|
Page generated in 0.0624 seconds