The New National Elevation Model (NNH) is a new high-resolution digital elevation model (DEM) of Sweden from airborne laser scanning. It creates many new opportunities, particularly in the area of flood mapping. NNH is provided by Lantmäteriet in two formats, both in raw LIDAR (Light Detection and Ranging) data and in grid format with two meter resolution. These alternatives have advantages and disadvantages and the aim of this thesis research is to identify these. One of the focuses of the study is data storage and thus data structure analysis, resolution and storage facilities. The research questions are: Why and in what context the different NNH-products from the National Land Survey are used (DEM 2+ or point cloud)? What constraints and opportunities are created by the different options, mainly in terms of different software, resolution, and data storage? The study area is Kärsön in Ekerö municipality located in Stockholms län and has an approximate area of 25 square kilometers. The study is divided into two parts. The first objective is to identify the consequences of using different software to create DEM from pointcloud compared to the DEM2+ model. Height models with a two meter resolution are created in FME and ArcGIS. The models are then compared with the grid from Lantmäteriet, created in TerraScan. The second objective is to examine the impact of the change in resolution, both the storage aspect and both the accuracy aspect. Inverse Distance Weighted (IDW) is an interpolation method which in previous studies proved to have the best results on high resolution LIDAR data. This model was tested and compared with a model from FMEs built-in function and the model from Lantmäteriet wich are based on triangulation (also proved a good method in previous studies). The grid created in TerraScan has good properties such as accuracy. The results show that the built-in ArcGIS model is not sufficient for the purposes of the model. Flood mapping requires continuous surfaces and the model lacks large areas of data. However, there are other aspects such as the break lines, these cannot be added to the TerraScan model or in the IDW but in the FME-modeler it is possible. In addition, it is not possible to edit the model that is delivered from Lantmäteriet. If there are outliers in the data, they will have much impact on the result. With a model created from the point cloud it is easy to remove these outliers. Increased resolution gives a quadratic increase in storage space so it is considered important not to use a resolution that is not really necessary. If the purpose of the analysis requires higher resolution than two meters it is possible to achieve higher accuracy for areas with high point density. The raw data format also provides opportunities to create additional models with other uses, building models or forest inventory application can for example be extracted from the data. If the purpose is that the finished grid model is adequate, there is no direct reason to spend time creating a new model. But for a user with knowledge of laser data structure and processing, creating elevation models from raw LIDAR data could give advantages.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-90307 |
Date | January 2012 |
Creators | Löfquist, Johanna |
Publisher | KTH, Samhällsplanering och miljö |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-GIT, 1653-5227 ; EX 12-002 |
Page generated in 0.0026 seconds