Return to search

Arrays de microfones para medida de campos acústicos. / Microphone arrays for acoustic field measurements.

Imageamento acústico é um problema computacionalmente caro e mal-condicionado, que envolve estimar distribuições de fontes com grandes arranjos de microfones. O método clássico para imageamento acústico utiliza beamforming, e produz a distribuição de fontes de interesse convoluída com a função de espalhamento do arranjo. Esta convolução borra a imagem ideal, significativamente diminuindo sua resolução. Convoluções podem ser evitadas com técnicas de ajuste de covariância, que produzem estimativas de alta resolução. Porém, estas têm sido evitadas devido ao seu alto custo computacional. Nesta tese, admitimos um arranjo bidimensional com geometria separável, e desenvolvemos transformadas rápidas para acelerar imagens acústicas em várias ordens de grandeza. Estas transformadas são genéricas, e podem ser aplicadas para acelerar beamforming, algoritmos de deconvolução e métodos de mínimos quadrados regularizados. Assim, obtemos imagens de alta resolução com algoritmos estado-da-arte, mantendo baixo custo computacional. Mostramos que arranjos separáveis produzem estimativas competitivas com as de geometrias espirais logaritmicas, mas com enormes vantagens computacionais. Finalmente, mostramos como estender este método para incorporar calibração, um modelo para propagação em campo próximo e superfícies focais arbitrárias, abrindo novas possibilidades para imagens acústicas. / Acoustic imaging is a computationally intensive and ill-conditioned inverse problem, which involves estimating high resolution source distributions with large microphone arrays. The classical method for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Convolutions can be avoided with covariance fitting methods, which have been known to produce robust high-resolution estimates. However, these have been avoided due to prohibitive computational costs. In this thesis, we assume a 2D separable array geometry, and develop fast transforms to accelerate acoustic imaging by several orders of magnitude with respect to previous methods. These transforms are very generic, and can be applied to accelerate beamforming, deconvolution algorithms and regularized least-squares solvers. Thus, one can obtain high-resolution images with state-of-the-art algorithms, while maintaining low computational cost. We show that separable arrays deliver accuracy competitive with multi-arm spiral geometries, while producing huge computational benefits. Finally, we show how to extend this approach with array calibration, a near-field propagation model and arbitrary focal surfaces, opening new and exciting possibilities for acoustic imaging.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26032012-115753
Date23 January 2012
CreatorsRibeiro, Flávio Protásio
ContributorsNascimento, Vítor Heloiz
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0028 seconds