Return to search

On dysgraphia diagnosis support via the automation of the BVSCO test scoring : Leveraging deep learning techniques to support medical diagnosis of dysgraphia / Om dysgrafi diagnosstöd via automatisering av BVSCO-testpoäng : Utnyttja tekniker för djupinlärning för att stödja medicinsk diagnos av dysgrafi

Dysgraphia is a rather widespread learning disorder in the current society. It is well established that an early diagnosis of this writing disorder can lead to improvement in writing skills. However, as of today, although there is no comprehensive standard process for the evaluation of dysgraphia, most of the tests used for this purpose must be done at a physician’s office. On the other hand, the pandemic triggered by COVID-19 has forced people to stay at home and opened the door to the development of online medical consultations. The present study therefore aims to propose an automated pipeline to provide pre-clinical diagnosis of dysgraphia. In particular, it investigates the possibility of applying deep learning techniques to the most widely used test for assessing writing difficulties in Italy, the BVSCO-2. This test consists of several writing exercises to be performed by the child on paper under the supervision of a doctor. To test the hypothesis that it is possible to enable children to have their writing impairment recognized even at a distance, an innovative system has been developed. It leverages an already developed customized tablet application that captures the graphemes produced by the child and an artificial neural network that processes the images and recognizes the handwritten text. The experimental results were analyzed using different methods and were compared with the actual diagnosis that a doctor would have provided if the test had been carried out normally. It turned out that, despite a slight fixed bias introduced by the machine for some specific exercises, these results seemed very promising in terms of both handwritten text recognition and diagnosis of children with dysgraphia, thus giving a satisfactory answer to the proposed research question. / Dysgrafi är en ganska utbredd inlärningsstörning i dagens samhälle. Det är väl etablerat att en tidig diagnos av denna skrivstörning kan leda till en förbättring av skrivförmågan. Även om det i dag inte finns någon omfattande standardprocess för utvärdering av dysgrafi måste dock de flesta av de tester som används för detta ändamål göras på en läkarmottagning. Å andra sidan har den pandemi som utlöstes av COVID-19 tvingat människor att stanna hemma och öppnat dörren för utvecklingen av medicinska konsultationer online. Syftet med denna studie är därför att föreslå en automatiserad pipeline för att ge preklinisk diagnos av dysgrafi. I synnerhet undersöks möjligheten att tillämpa djupinlärningstekniker på det mest använda testet för att bedöma skrivsvårigheter i Italien, BVSCO-2. Testet består av flera skrivövningar som barnet ska utföra på papper under överinseende av en läkare. För att testa hypotesen att det är möjligt att göra det möjligt för barn att få sina skrivsvårigheter erkända även på distans har ett innovativt system utvecklats. Det utnyttjar en redan utvecklad skräddarsydd applikation för surfplattor som fångar de grafem som barnet producerar och ett artificiellt neuralt nätverk som bearbetar bilderna och känner igen den handskrivna texten. De experimentella resultaten analyserades med hjälp av olika metoder och jämfördes med den faktiska diagnos som en läkare skulle ha ställt om testet hade utförts normalt. Det visade sig att, trots en liten fast bias som maskinen införde för vissa specifika övningar, verkade dessa resultat mycket lovande när det gäller både igenkänning av handskriven text och diagnos av barn med dysgrafi, vilket gav ett tillfredsställande svar på den föreslagna forskningsfrågan.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321515
Date January 2022
CreatorsSommaruga, Riccardo
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:595

Page generated in 0.0127 seconds