Return to search

Textile-enabled Bioimpedance Instrumentation for Personalised Health Monitoring Applications

A growing number of factors, including the costs, technological advancements, an ageing population, and medical errors are leading industrialised countries to invest in research on alternative solutions to improving their health care systems and increasing patients’ life quality. Personal Health System (PHS) solutions envision the use of information and communication technologies that enable a paradigm shift from the traditional hospital-centred healthcare delivery model toward a preventive and person-centred approach. PHS offers the means to follow patient health using wearable, portable or implantable systems that offer ubiquitous, unobtrusive bio-data acquisition, allowing remote access to patient status and treatment monitoring. Electrical Bioimpedance (EBI) technology is a non-invasive, quick and relatively affordable technique that can be used for assessing and monitoring different health conditions, e.g., body composition assessments for nutrition. EBI technology combined with state-of-the-art advances in sensor and textile technology are fostering the implementation of wearable bioimpedance monitors that use functional garments for the implementation of personalised healthcare applications. This research studies the development of a portable EBI spectrometer that can use dry textile electrodes for the assessment of body composition for the purposes of clinical uses. The portable bioimpedance monitor has been developed using the latest advances in system-on-chip technology for bioimpedance spectroscopy instrumentation. The obtained portable spectrometer has been validated against commercial spectrometer that performs total body composition assessment using functional textrode garments. The development of a portable Bioimpedance spectrometer using functional garments and dry textile electrodes for body composition assessment has been shown to be a feasible option. The availability of such measurement systems bring closer the real implementation of personalised healthcare systems. / <p>QC 20130405</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-120373
Date January 2013
CreatorsFerreira Gonzalez, Javier
PublisherKTH, Medicinska sensorer, signaler och system (MSSS), Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-STH : report, 1653-3836 ; 2013:1

Page generated in 0.0028 seconds