Ce travail est consacré à l'étude d'un modèle multifluide multivitesse récemment proposé par Scannapieco et Cheng (SC) pour décrire l'interpénétration de fluides miscibles (voir [SC02]). Dans ce document, on commence par resituer ce modèle dans le contexte de la modélisation des écoulements de mélanges de fluides miscibles, puis on procède à son analyse mathématique (étude de l'hyperbolicité, existence d'une entropie mathématique strictement convexe, analyse asymptotique et limite de diffusion). Ensuite, on se concentre sur la problématique de la résolution numérique des systèmes de lois de conservation avec un terme source de relaxation, classe dont fait partie le modèle SC. Une difficulté lors de la résolution numérique de tels systèmes est de capturer sur maillage grossier leur régime asymptotique quand le terme source est raide. Le principal apport de ce travail réside dans le fait que l'on propose un nouveau mode de construction de schéma Lagrange-projection qui prend en compte la présence d'un terme source au niveau du flux numérique. Cette technique est d'abord appliquée en 1D au problème modèle des équations d'Euler avec friction, puis au modèle multifluide SC. Dans les deux cas, on prouve que le nouveau schéma est asymptotic-preserving et entropique sous une condition de type CFL. L'extension 2D du schéma est effectuée par directions alternées. Des résultats numériques mettent en évidence l'apport du nouveau flux en comparaison avec un schéma Lagrange-projection classique où le terme source est traité par un splitting d'opérateur.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01060943 |
Date | 28 November 2007 |
Creators | Enaux, Cédric |
Publisher | Ecole Centrale Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds