Return to search

ATOM OPTICS, CORE ELECTRONS, AND THE VAN DER WAALS POTENTIAL

This dissertation describes new measurements of the van der Waals (vdW) potential energy for atoms near a surface. The measurements presented here were accomplished by studying diffraction a beam of atoms transmitted through a nanograting. I will describe how we improved precision by a factor of 10 over previous diffraction measurements by studying how different types of atoms interact with the same surface. As a result of this new precision, we were able to show for the first time the contribution of atomic core electrons to the atom-surface potential, and experimentally test different atomic structure calculation methods.In addition, this dissertation will describe how changing the width of the grating bars to achieve a particular "magic" grating bar width or rotating a grating to a particular "magic" angle allows us to determine both the atom-surface potential strength and the geometry of the grating. This represents an improvement over several recent studies where uncertainties in the nanograting geometry limited precision in the measurements of the vdW potential.For a complementary measurement, also discussed in this dissertation, we collaborated with the Vigue group in Toulouse, France. In this collaboration we used an atom interferometer to measure the phase shift due to transmission through a nanograting. By combining diffraction data from Tucson with interferometry data from Toulouse we improved the precision of interferometry measurements of the atom-surface potential of a single atomic species by almost a factor of 10 over previous interferometric measurements of the vdW potential. These interferometry measurements also serve to measure the shape of the vdW potential and set a limit on non-Newtonian gravitational interactions at 1-2 nm length scales.Finally, this dissertation will discuss how nanogratings with optimized geometry can improve atom interferometers, for example, with blazed gratings. We discuss next generation atom-surface potential measurements and examine new ways of analyzing diffraction data.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/145119
Date January 2011
CreatorsLonij, Vincent P. A.
ContributorsCronin, Alexander D, Meystre, Pierre, Jessen, Poul S, Stafford, Charles S, Jiang, George J
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Dissertation, text
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0099 seconds