Spelling suggestions: "subject:"biosurface potential"" "subject:"bothsurface potential""
1 |
ATOM OPTICS, CORE ELECTRONS, AND THE VAN DER WAALS POTENTIALLonij, Vincent P. A. January 2011 (has links)
This dissertation describes new measurements of the van der Waals (vdW) potential energy for atoms near a surface. The measurements presented here were accomplished by studying diffraction a beam of atoms transmitted through a nanograting. I will describe how we improved precision by a factor of 10 over previous diffraction measurements by studying how different types of atoms interact with the same surface. As a result of this new precision, we were able to show for the first time the contribution of atomic core electrons to the atom-surface potential, and experimentally test different atomic structure calculation methods.In addition, this dissertation will describe how changing the width of the grating bars to achieve a particular "magic" grating bar width or rotating a grating to a particular "magic" angle allows us to determine both the atom-surface potential strength and the geometry of the grating. This represents an improvement over several recent studies where uncertainties in the nanograting geometry limited precision in the measurements of the vdW potential.For a complementary measurement, also discussed in this dissertation, we collaborated with the Vigue group in Toulouse, France. In this collaboration we used an atom interferometer to measure the phase shift due to transmission through a nanograting. By combining diffraction data from Tucson with interferometry data from Toulouse we improved the precision of interferometry measurements of the atom-surface potential of a single atomic species by almost a factor of 10 over previous interferometric measurements of the vdW potential. These interferometry measurements also serve to measure the shape of the vdW potential and set a limit on non-Newtonian gravitational interactions at 1-2 nm length scales.Finally, this dissertation will discuss how nanogratings with optimized geometry can improve atom interferometers, for example, with blazed gratings. We discuss next generation atom-surface potential measurements and examine new ways of analyzing diffraction data.
|
2 |
Développement d'un dispositif expérimental pour la diffraction d'atomes rapides et étude de surfaces d'isolants ioniques / Development of an experimental device for the Grazing Fast Atom Diffration technique and study of ionic insulators surfacesSoulisse, Pierre 20 July 2011 (has links)
Ce mémoire de thèse présente le développement d'un dispositif expérimental spécialement conçu pour l'étude de la diffraction d'atomes rapides et son utilisation pour suivre la croissance de couches minces sur un bâti d'épitaxie. Des études de surfaces de KBr(100) et de NaCl(100) avec ce nouveau dispositif sont présentées. Nous nous sommes intéressés notamment à la forme du potentiel que les atomes perçoivent lorsqu'ils diffusent sur une surface de KBr(100). Nous avons également mis en évidence lors de ces études un nouveau régime de diffraction qui semble correspondre à des mouvements longitudinaux et normaux cohérents. Grâce à des images mieux résolues, nous avons montré comment la diffraction d'atomes rapides permet d'observer et quantifier des défauts topologiques comme la mosaïcité. Une étude d'une surface d'Argent (110) est aussi présentée. Elle a permis d'observer la diffraction d'atomes rapides sur les métaux, montrant ainsi que GIFAD est applicable aux trois types de matériaux (isolants, semi-conducteurs et métaux) et que les processus d’excitations électroniques sur ces surfaces ne détruisent pas complètement la cohérence. Enfin des premiers résultats de GIFAD en tant que technique de suivi de croissance par épitaxie sont présentés dans ce travail. / This Ph.D memoir presents the development work of an experimental setup especially designed for the study of the fast atom diffraction and its use as a method to control the thin films growth in an epitaxy chamber. Studies of the surfaces of KBr(100) and NaCl(001) with this new setup are presented. A new diffraction regime which may correspond to coherent longitudinal and normal motions is identified. The enhanced resolution allows observation of topological defects such as the surface mosaicity. A study of the Ag(100) surface is also presented showing that fast atom diffraction can be observed on metal surface as that the inelastic excitations processes do not completely destroy the coherence. Finally, we present the first results obtained with GIFAD as a method to control thin film growth.
|
Page generated in 0.0876 seconds