Since 1982, the Si (111)-(7x7) surface has been extensively studied both theoretically and experimentally with the modern powerful tools of STM and Scanning Tunneling Spectroscopy (STS). In this work, a simple atomic orbital model for the Si (111)-(7x7) surface is developed to simulate the experimental results of STM and STS. Based on Tersoff-Hamann’s theory for the tunneling current, simulations of clean Si (111)-(7x7) constant-current images are presented. The direct, real-space simulated topographic images of the surface are compared to experimental results qualitatively and quantitatively. The simulation of spectroscopic imaging and normalized conductance spectra are also included. The adsorption of atomic hydrogen atoms onto the Si (111)-(7x7) surface is also simulated. / xiv, 146 leaves ; 29 cm.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:ALU.w.uleth.ca/dspace#10133/543 |
Date | January 2006 |
Creators | Liu, Weiming, University of Lethbridge. Faculty of Arts and Science |
Contributors | Patitsas, Steve |
Publisher | Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2006, Faculty of Arts and Science, Department of Physics |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | Thesis (University of Lethbridge. Faculty of Arts and Science) |
Page generated in 0.0016 seconds