This thesis presents rubidium packaging methods for integration using anti-resonant reflecting optical waveguides (ARROWs) on a planar chip. The atomic vapor ARROW confines light through rubidium vapor, increases the light-vapor interaction length, decreases the size of the atomic cell to chip scales, and opens up possibilities for waveguide systems on chips for additional optoelectronic devices. Rubidium vapor packaging for long-life times are essential for realizing feasibly useful devices. Considerations of outgassing, leaking and chemical compatibilities of materials in rubidium vapor cells lead to an all-metal design. The effect of these characteristics on the rubidium D2 line spectra is considered.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6696 |
Date | 01 December 2015 |
Creators | Hill, Cameron Louis |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0024 seconds